Antibacterial Property and Bioactive Compounds of Selected Herbal Products

V. O. Oyetayo, O. A. Balogun

Abstract


Ten herbal products, made up of five powdery and five liquid samples of different brands, were assessed microbiologically for the presence and types of microorganisms. Qualitative and quantitative phytochemical screening of the samples above was also conducted to verify the presence or absence of bioactive components. Ten bacterial species, viz: Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Shigella dysenteriae, Pseudomonas aeruginosa, Corynebacterium diptheriae, Streptococcus pyogenes, Enterobacter cloacae, Klebsiella pneumoniae, and Clostridium botulinum, were isolated from these herbal products. The fungi isolated were Aspergillus Niger, Rhizopus stolonifer, Alternaria alternata, Aspergillus flavus, Fusarium verticillioides, Fusarium oxysporium, and Mucor racemosus. Results of phytochemical screening revealed the presence of flavonoids, saponins, terpenoids, and tannins. Alkaloid was the most abundant in the samples, with a value of 1070.04 mg/100g in sample F, while the least abundant in sample F was phenol (0.38 mg/100g). The GC-MS analysis revealed the presence of certain compounds such as thiophene, propanoic acid, 2,2-dimethyl-, ethyl ester, pentanoic acid, 2-methyl, toluene, and many others in sample F that exhibited significant antimicrobial effects. These compounds are known to possess antimicrobial properties. Results from this study revealed that, though these herbal products contain bioactive compounds with potential antimicrobial and antioxidant properties, they are contaminated with microorganisms of health importance. Hence, local herbalists preparing these herbal products need to be educated on good manufacturing practices (GMP).

 

Doi: 10.28991/SciMedJ-2022-04-04-03

Full Text: PDF


Keywords


Herbal; Microbial; Contamination; Antimicrobial; Bioactives.

References


Hitokoto, H., Morozumi, S., Wauke, T., Sakai, S., & Kurata, H. (1978). Fungal contamination and mycotoxin detection of powdered herbal drugs. Applied and Environmental Microbiology, 36(2), 252–256. doi:10.1128/aem.36.2.252-256.1978.

Mayekar, V. M., Ali, A., Alim, H., & Patel, N. (2021). A review: Antimicrobial activity of the medicinal spice plants to cure human disease. Plant Science Today, 8(3), 629–646. doi:10.14719/PST.2021.8.3.1152.

Oyetayo, V. (2008). Microbial Load and Antimicrobial Property of Two Nigerian Herbal Remedies. African Journal of Traditional, Complementary and Alternative Medicines, 5(1), 78. doi:10.4314/ajtcam.v5i1.31259.

Barrett, B., Kiefer, D., & Rabago, D. (1999). Assessing the risks and benefits of herbal medicine: an overview of scientific evidence. Alternative Therapies in Health and Medicine, 5(4), 40.

Thillaivanan, S., & Samraj, K. (2014). Challenges, constraints and opportunities in herbal medicines-a review. International Journal of Herbal medicine, 2(1), 21-24.

Foroughi, A. (2022). A review on medicinal plants; an emphasis on antimicrobial effects. Veterinary Research & Biological Products, 35(134), 2–17. doi:10.22092/vj.2021.353171.1809.

Chiegeiro, O., Obakpororo, A., Nnenna, F., & Simson, O. (2022). Microbial Quality and Antimicrobial Potential of some Herbal Remedies Marketed in Owerri-West Nigeria. African Journal of Health Sciences, 35(4), 537–549.

Braun, L. A., Tiralongo, E., Wilkinson, J. M., Spitzer, O., Bailey, M., Poole, S., & Dooley, M. (2010). Perceptions, use and attitudes of pharmacy customers on complementary medicines and pharmacy practice. BMC Complementary and Alternative Medicine, 10(38). doi:10.1186/1472-6882-10-38.

Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4. doi:10.3389/fphar.2013.00177.

WHO. (2002). Traditional Medicine Strategy (2002–2005). World Health Organization (WHO), Geneva, Switzerland.

Tapsel, L. C., Hemphill, I. & Cobiac, L. (2006). Health Benefits of Herbs and Spices. The Past, the Present, the Future. Medicine Journal Australia, 185 (4), 24.

Caldas, E. D., & Machado, L. L. (2004). Cadmium, mercury and lead in medicinal herbs in Brazil. Food and Chemical Toxicology, 42(4), 599–603. doi:10.1016/j.fct.2003.11.004.

Ang, H. H., & Lee, K. L. (2006). Contamination of mercury in Tongkat Ali Hitam herbal preparations. Food and Chemical Toxicology, 44(8), 1245–1250. doi:10.1016/j.fct.2006.01.014.

Ichinoe, M., Konuma, H., Kartastisna, A., & Satake, M. (1988). Microbial contamination of traditional herbal drugs in Indonesia. Eisei Shikenjo hokoku. Bulletin of National Institute of Hygienic Sciences, (106), 18-24.

Frustaci, A., Magnavita, N., Chimenti, C., Caldarulo, M., Sabbioni, E., Pietra, R., Cellini, C., Possati, G. F., & Maseri, A. (1999). Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. Journal of the American College of Cardiology, 33(6), 1578–1583. doi:10.1016/S0735-1097(99)00062-5.

Vimy, M. J., Takahashi, Y., & Lorscheider, F. L. (1990). Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 258(4), R939–R945. doi:10.1152/ajpregu.1990.258.4.r939.

Cornett, C. R., Markesbery, W. R., & Ehmann, W. D. (1998). Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. NeuroToxicology, 19(3), 339–346.

Ngim, C. H., & Devathasan, G. (1989). Epidemiologic study on the association between body burden mercury level and idiopathic Parkinson’s disease. Neuroepidemiology, 8(3), 128–141. doi:10.1159/000110175.

Boyd, N. D., Benediktsson, H., Vimy, M. J., Hooper, D. E., & Lorscheider, F. L. (1991). Mercury from dental “silver” tooth fillings impairs sheep kidney function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 261(4 30-4), 1010–1014. doi:10.1152/ajpregu.1991.261.4.r1010.

Kneifel, W., Czech, E., & Kopp, B. (2002). Microbial contamination of medicinal plants - A review. Planta Medica, 68(1), 5–15. doi:10.1055/s-2002-20060.

McCance, M. E., & Harrigan, W. F. (2000). Laboratory methods in food and dairy microbiology. Blackwell Science, Hoboken, United States.

Harborne, A.J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer, Dordrecht, Netherlands.

Jigna, P., & Sumitra, C. (2008). Phytochemical screening of some plants from western region of India. Plant Archives, 8(2), 657-662.

Chaughule, R. S., & Barve, R. S. (2023). Role of herbal medicines in the treatment of infectious diseases. Vegetos. doi:10.1007/s42535-022-00549-2.

Adeleye, I. A., Okogi, G., & Ojo, E. O. (2005). Microbial contamination of herbal preparations in Lagos, Nigeria. Journal of Health, Population and Nutrition, 23(3), 296.

Braide, W., Sokari, T. G., Nwaoguikpe, R. N., & Okorondu, S. I. (2008). Microbes from soils associated with metamorphosing moth larvae. Current Trends in Microbiology, 4, 11-14.

Bahri, R., Ghanadi, A. & Rahimipour, E. (2001). Microbial control of some Iranian herbal drugs. The Iranian Journal of Basic Medical Sciences 4(1): 1-6.

Okunlola, A., Adewoyin, B. A., & Odeku, O. A. (2007). Evaluation of Pharmaceutical and Microbial Qualities of Some Herbal Medicinal Products in South Western Nigeria. Tropical Journal of Pharmaceutical Research, 6(1), 661–670. doi:10.4314/tjpr.v6i1.14644.

Limyati, D. A., & Juniar, B. L. L. (1998). Jamu Gendong, a kind of traditional medicine in Indonesia: The microbial contamination of its raw materials and endproduct. Journal of Ethnopharmacology, 63(3), 201–208. doi:10.1016/S0378-8741(98)00082-8.

Aziz, N. H., Youssef, Y. A., El-Fouly, M. Z., & Moussa, L. A. (1998). Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Botanical Bulletin of Academia Sinica, 39, 279–285.

Sofowora, A. (1993). Medicinal plant and traditional medicine in Africa. Ibadan-Owerri-Kaduna-Lagos. Spectrum Book Ltd, Ibadan, Nigeria.

Sudhakar, M., Rao, C. V., Rao, P. M., & Raju, D. B. (2006). Evaluation of antimicrobial activity of Cleome viscosa and Gmelina asiatica. Fitoterapia, 77(1), 47–49. doi:10.1016/j.fitote.2005.08.003.

Khan, M. R., Omoloso, A. D., & Barewai, Y. (2006). Antimicrobial activity of the Derris elliptica, Derris indica and Derris trifoliata extractives. Fitoterapia, 77(4), 327–330. doi:10.1016/j.fitote.2006.03.007.

Oyetayo, V. O., & F. L. Oyetayo. (2006). Phytochemical Screening and Antibacterial Properties of Siam Weed, Chromolaena odorata, Leaf against Aerobic Isolates of Wound. International Journal of Applied Environmental Science, 2(1), 7–11.

Omotanwa, A. N., Kenneth, E. I., Owuna, J. E., Stella, O. S., Anne, D. N., & Obiekezie, S. O. (2023). Antibacterial activity and phytochemical screening of some medicinal plant extracts against bacteria isolated from food materials sold in Keffi, Nasarawa State, Nigeria. GSC Biological and Pharmaceutical Sciences, 22(1), 321-329. doi:10.30574/gscbps.2023.22.1.0027.

Liang, J., Huang, X., & Ma, G. (2022). Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Advances, 12(45), 29197–29213. doi:10.1039/d2ra02389j.

Gancho, O., Moshel, T., Boychenko, O., Bublii, T., Kostyrenko, O., Popovіch, I., Kolomiyets, S., & Krutikova, A. (2022). Herbal Medicines Antimicrobial Effect. Georgian Medical News, 7(328–329), 81–84.

Brown, J. E., & Rice-Evans, C. A. (1998). Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radical Research, 29(3), 247–255. doi:10.1080/10715769800300281.

Kim, H. J., Park, J. M., Kim, J. A., & Ko, B. P. (2008). Effect of herbal Ephedra Sinica and Evodia rutaecarpa on body composition and resting metabolic rate: A randomized, double-blind clinical trial in Korean premenopausal women. JAMS Journal of Acupuncture and Meridian Studies, 1(2), 128–138. doi:10.1016/S2005-2901(09)60033-9.


Full Text: PDF

DOI: 10.28991/SciMedJ-2022-04-04-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Victor Olusegun Oyetayo