Simple Physical Process Can Slow Down the Progression of Cancer

Jozsef Garai, Pal Kertai


If a liquid contains suspended solids and flows out of a perforated pipe, the suspended particles of the right size can accumulate and eventually clog the openings. It is suggested that this physical process could be employed to effectively block the openings of the intercellular gaps in angiogenic capillaries supplying cancer tissues. Clogging the big openings supplying cancer tissues would reduce the nutrition supply, resulting in deprivation. This process predictively could slow down the tumor progression. If the proposed physical process is effective, then societies that drink water containing colloidal-size particles should have fewer occurrences of cancer. Epidemiological data is consistent with this prediction and shows an inverse correlation between the total dissolved solid concentrations in drinking water and the incidence of cancer. The effectiveness of the proposed physical process was tested in a pilot project on six rats. Four of them had suspended kaolinite minerals in the drinking water, and two of them got regular tap water. All the treated rats developed smaller tumors than the untreated control group of two. The average weight of the developed tumors was 42 percent less in the treated group.


Doi: 10.28991/SciMedJ-2022-0401-4

Full Text: PDF


Angiogenesis; Cancer Treatment; Nanoparticle Treatment; Enhanced Permeability and Retention Effect; Anticancer; Nano Medicine.


Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 46(12_Part_1), 6387-6392.

Aslan, B., Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2013). Nanotechnology in cancer therapy. Journal of Drug Targeting, 21(10), 904–913. doi:10.3109/1061186X.2013.837469.

Gmeiner, W. H., & Ghosh, S. (2014). Nanotechnology for cancer treatment. Nanotechnology Reviews, 3(2), 111–122. doi:10.1515/ntrev-2013-0013.

Wu, J. (2021). The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. Journal of Personalized Medicine, 11(8), 771. doi:10.3390/jpm11080771.

Leporatti, S. (2022). Thinking about Enhanced Permeability and Retention Effect (EPR). Journal of Personalized Medicine, 12(8), 1259. doi:10.3390/jpm12081259.

Rodríguez, F., Caruana, P., De la Fuente, N., Español, P., Gámez, M., Balart, J., Llurba, E., Rovira, R., Ruiz, R., Martín-Lorente, C., Corchero, J. L., & Céspedes, M. V. (2022). Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules, 12(6), 784. doi:10.3390/biom12060784.

Folkman, J., & Kalluri, R. (2003). Chapter 11: Tumor angiogenesis Cancer Medicine, 6th Ed. BC Decker Inc., Hamilton, Canada.

Das, U. N. (2003). Erratum: Abrupt and complete occlusion of tumor-feeding vessels by γ-linolenic acid (Nutrition 18:7-8). Nutrition, 19(1), 90. doi:10.1016/S0899-9007(02)00944-9.

Hanahan, D., & Weinberg, R. A. (2000). The Hallmarks of Cancer. Cell, 100(1), 57–70. doi:10.1016/s0092-8674(00)81683-9.

Cho, K., Wang, X., Nie, S., Chen, Z., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310–1316. doi:10.1158/1078-0432.CCR-07-1441.

Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., & Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4607–4612. doi:10.1073/pnas.95.8.4607.

Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chemistry, 21(5), 797–802. doi:10.1021/bc100070g.

Pérez Paricio, A. (2001). Integrated modelling of clogging processes in artificial groundwater recharge. Ph.D. Thesis, Universitat Politècnica de Catalunya headquarter, Barcelona, Spain.

WHO/UNEP, GEMS. (1989). Global freshwater quality. Alden Press, Oxford, United Kingdom.

Bruvold, W. H., & Ongerth, H. J. (1969). Taste Quality of Mineralized Water. Journal - American Water Works Association, 61(4), 170–174.doi:10.1002/j.1551-8833.1969.tb03732.x.

World Health Organization (2003). Total dissolved solids in Drinking water, Background document for development of WHO Guidelines for Drinking-water Quality. WHO, Geneva, Switzerland.

Burton, A. C., & Comhill, J. F. (1977). Correlation of cancer death rates with altitude and with the quality of water supply of the 100 largest cities in the United States. Journal of Toxicology and Environmental Health, 3(3), 465–478. doi:10.1080/15287397709529579.

Craun, G. F., & McCabe, L. J. (1975). Problems Associated With Metals in Drinking Water. Journal - American Water Works Association, 67(11), 593–599. doi:10.1002/j.1551-8833.1975.tb02307.x.

Crawford, M. D., Gardner, M. J., & Morris, J. N. (1968). Mortality and hardness of local water-supplies. Lancet, 1(7547), 827–831. doi:10.1016/s0140-6736(68)90297-3.

Gardner, M. J., Crawford, M. D., & Morris, J. N. (1969). Patterns of mortality in middle and early old age in the county boroughs of England and Wales. British Journal of Preventive & Social Medicine, 23(3), 133–140. doi:10.1136/jech.23.3.133.

Keller, W. D., & Reesman, A. L. (1963). Glacial milks and their laboratory-simulated counterparts. Bulletin of the Geological Society of America, 74(1), 61–76. doi:10.1130/0016-7606(1963)74[61:GMATLC]2.0.CO;2.

Leaf, A. (1973). Every day is a gift when you are over 100. National Geographic, 143(1), 93-118.

Leaf, A. (1973). Getting old. Scientific American. Available online: (accessed on January 2022).

McCarrison, R. (1922). Faulty food in relation to gastro-intestinal disorder. Journal of the American Medical Association, 78(1), 1–8. doi:10.1001/jama.1922.02640540007001.

Kart, C. S., Metress, E. K. & Metress, S. P. (1988). Biological theories of aging. Aging, Health and Society, Jones and Bardet, Boston, United States.

Trencsenyi, G., Kertai, P., Bako, F., Hunyadi, J., Marian, T., Hargitai, Z., ... & Banfalvi, G. (2009). Renal capsule-parathymic lymph node complex: a new in vivo metastatic model in rats. Anticancer Research, 29(6), 2121-2126.

Full Text: PDF

DOI: 10.28991/SciMedJ-2022-0401-4


  • There are currently no refbacks.

Copyright (c) 2022 Jozsef Garai