Indoor Air Pollution Related Respiratory Ill Health, a Sequel of Biomass Use

David Mulenga, Seter Siziya

Abstract


Introduction: Climate change may worsen existing indoor air problems and create new problems by altering outdoor conditions that affect indoor conditions. Since climate change is due to both natural variability and human-induced contributions, public health professionals through their expertise in health promotion and behavior change can play a vital role in promoting lifestyle choices that will decrease greenhouse gas emissions. This study, therefore, aims at presenting the health effects of indoor air pollutants from biomass use. Methods: A cross sectional study involving 1,170 consenting women was conducted in Masaiti and Ndola districts of Zambia. Data collection tools included a structured questionnaire; foobot (indoor air quality monitoring device) and spirometer (lung function test device). Data was analyzed using SPSS version 16 and analyses were done at Univariate, bivariate and multivariate level at 5% statistical significant level. Results: Population using biomass as cooking fuel was 69.2%. Indoor particulate (PM2.5) overall median (Q1, Q2) distribution during cooking period was 501(411, 686) μg/m3 and daily average was 393(303,578) μg/m3 while VOC daily average was 343(320, 363) ppb. The proportion of women with respiratory symptoms and impaired lung functions was higher in households with high levels of indoor pollutants. There was a statistically significant association between mean indoor particulate concentration levels and the number of maternal respiratory symptoms. There was a significant association between indoor VOC and forced vital capacity (p=0.011). Conclusion: The results contribute to the growing evidence regarding the effect of biomass use on indoor air quality and consequent adverse respiratory health outcomes.


Keywords


Particulate Matter; Volatile Organic Compounds; Biomass.

References


Stephens, B., & Siegel, J. A. (2012). Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air, 22(6), 501–513. doi:10.1111/j.1600-0668.2012.00779.x

Goldemberg, J., Martinez-Gomez, J., Sagar, A., & Smith, K. R. (2018). Household air pollution, health, and climate change: cleaning the air. Environmental Research Letters, 13(3), 030201. doi:10.1088/1748-9326/aaa49d.

Gauderman, W. J., Urman, R., Avol, E., Berhane, K., McConnell, R., Rappaport, E., … Gilliland, F. (2015). Association of Improved Air Quality with Lung Development in Children. New England Journal of Medicine, 372(10), 905–913. doi:10.1056/nejmoa1414123.

García-Mozo, H., Galán, C., Jato, V., Belmonte, J., De La Guardia, C. D., Fernández, D., ... & Trigo, M. M. (2006). Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13(2), 209.

Garfin, G., G. Franco, H. Blanco, A. Comrie, P. Gonzalez, T. Piechota, R. Smyth, and R. Waskom, 2014: Ch. 20: Southwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J.M. Melillo, Richmond, T. (T.C.), and Yohe, G.W., Eds., U.S. Global Change Research Program, 462-486.

Halsby, K. D., Joseph, C. A., Lee, J. V., & Wilkinson, P. (2014). The relationship between meteorological variables and sporadic cases of Legionnaires' disease in residents of England and Wales. Epidemiology & Infection, 142(11), 2352-2359. doi:10.1017/S0950268813003294.

Haman, C. L., Couzo, E., Flynn, J. H., Vizuete, W., Heffron, B., & Lefer, B. L. (2014). Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. Journal of Geophysical Research: Atmospheres, 119(10), 6230–6245. doi:10.1002/2013jd020473.

Henderson, S. B., Brauer, M., MacNab, Y. C., & Kennedy, S. M. (2011). Three Measures of Forest Fire Smoke Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a Population-Based Cohort. Environmental Health Perspectives, 119(9), 1266–1271. doi:10.1289/ehp.1002288.

Smith, K. R., Bruce, N., Balakrishnan, K., Adair-Rohani, H., Balmes, J., Chafe, Z., … Rehfuess, E. (2014). Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution. Annual Review of Public Health, 35(1), 185–206. doi:10.1146/annurev-publhealth-032013-182356.

Burnett, D., Barbour, E., & Harrison, G. P. (2014). The UK solar energy resource and the impact of climate change. Renewable Energy, 71, 333–343. doi:10.1016/j.renene.2014.05.034.

Janssen, N. A. H., Strak, M., Yang, A., Hellack, B., Kelly, F. J., Kuhlbusch, T. A. J., … Hoek, G. (2014). Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occupational and Environmental Medicine, 72(1), 49–56. doi:10.1136/oemed-2014-102303.

Hogervorst, J. G. F., de Kok, T. M. C. M., Briedé, J. J., Wesseling, G., Kleinjans, J. C. S., & van Schayck, C. P. (2006). Relationship between Radical Generation by Urban Ambient Particulate Matter and Pulmonary Function of School Children. Journal of Toxicology and Environmental Health, Part A, 69(3), 245–262. doi:10.1080/15287390500227431.

Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. doi:10.1016/j.atmosenv.2012.06.039.

U.S. Environmental Protection Agency, Washington DC: Integrated science assessment for particulate matter. US Environmental Protection Agency. Washington, DC. 2009.

Ji, H., & Khurana Hershey, G. K. (2012). Genetic and epigenetic influence on the response to environmental particulate matter. Journal of Allergy and Clinical Immunology, 129(1), 33–41. doi:10.1016/j.jaci.2011.11.008.

Hulin, M., Simoni, M., Viegi, G., & Annesi-Maesano, I. (2012). Respiratory health and indoor air pollutants based on quantitative exposure assessments. European Respiratory Journal, 40(4), 1033–1045. doi:10.1183/09031936.00159011.

Romieu, I., Riojas-Rodríguez, H., Marrón-Mares, A. T., Schilmann, A., Perez-Padilla, R., & Masera, O. (2009). Improved Biomass Stove Intervention in Rural Mexico. American Journal of Respiratory and Critical Care Medicine, 180(7), 649–656. doi:10.1164/rccm.200810-1556oc.

Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases. JAMA, 295(10), 1127. doi:10.1001/jama.295.10.1127.

Tielsch, J. M., Katz, J., Zeger, S. L., Khatry, S. K., Shrestha, L., Breysse, P., … LeClerq, S. C. (2014). Designs of two randomized, community-based trials to assess the impact of alternative cookstove installation on respiratory illness among young children and reproductive outcomes in rural Nepal. BMC Public Health, 14(1). doi:10.1186/1471-2458-14-1271.

Tielsch, J. M., Steinhoff, M., Katz, J., Englund, J. A., Kuypers, J., Khatry, S. K., … LeClerq, S. C. (2015). Designs of two randomized, community-based trials to assess the impact of influenza immunization during pregnancy on respiratory illness among pregnant women and their infants and reproductive outcomes in rural Nepal. BMC Pregnancy and Childbirth, 15(1). doi:10.1186/s12884-015-0470-y.

Kumar, R., Singh, K., Nagar, S., Kumar, M., Mehto, U. K., Rai, G., & Gupta, N. (2015). Pollutant levels at cooking place and their association with respiratory symptoms in women in a rural area of Delhi-NCR. Indian J Chest Dis Allied Sci, 57(4), 225-31.

Kumar, R., Nagar, J. K., Goel, N., Kumar, P., Kushwah, A. S., & Gaur, S. N. (2015). Indoor air pollution and asthma in children at Delhi, India. Pneumonologia i Alergologia Polska, 83(4), 275–282. doi:10.5603/piap.2015.0047.

Ezzati, M., & Kammen, D. M. (2001). Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. The Lancet, 358(9282), 619–624. doi:10.1016/s0140-6736(01)05777-4.

Kurmi, O. P., Semple, S., Steiner, M., Henderson, G. D., & Ayres, J. G. (2008). Particulate matter exposure during domestic work in Nepal. Annals of occupational hygiene, 52(6), 509-517. doi:10.1093/annhyg/men026.

Rumchev, K., Spickett, J. T., Brown, H. L., & Mkhweli, B. (2007). Indoor air pollution from biomass combustion and respiratory symptoms of women and children in a Zimbabwean village. Indoor Air, 0(0), 071105095528002–??? doi:10.1111/j.1600-0668.2007.00494.x.

World Health Organisation, WHO IAQ guidelines 2014; Household fuel combustion. WHO Geneva.

WHO. Air quality guidelines, global update. http://www.euro.who.int/Document/E90038.pdf 2006 (accessed April 2018).


Full Text: PDF

DOI: 10.28991/SciMedJ-2019-0101-5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 David Mulenga