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Abstract 

In this paper, we analyze and predict the number of daily confirmed cases of coronavirus (COVID-19) based on two 

statistical models and a deep learning (DL) model; the autoregressive integrated moving average (ARIMA), the 

generalized autoregressive conditional heteroscedasticity (GARCH), and the stacked long short-term memory deep neural 

network (LSTM DNN). We find the orders of the statistical models by the autocorrelation function and the partial 

autocorrelation function, and the hyperparameters of the DL model, such as the numbers of LSTM cells and blocks of a 

cell, by the exhaustive search. Ten datasets are used in the experiment; nine countries and the world datasets, from Dec. 

31, 2019, to Feb. 22, 2021, provided by the WHO. We investigate the effects of data size and vaccination on performance. 

Numerical results show that performance depends on the used data's dates and vaccination. It also shows that the 

prediction by the LSTM DNN is better than those of the two statistical models. Based on the experimental results, the 

percentage improvements of LSTM DNN are up to 88.54% (86.63%) and 90.15% (87.74%) compared to ARIMA and 

GARCH, respectively, in mean absolute error (root mean squared error). While the performances of ARIMA and 

GARCH are varying according to the datasets. The obtained results may provide a criterion for the performance ranges 

and prediction accuracy of the COVID-19 daily confirmed cases. 

Keywords: Covid-19; Predictive Model; Non-linear Fitting; Long Short-Term Memory Deep Neural Network; Autoregressive 

Integrated Moving Average; Generalized Autoregressive Conditional Heteroscedasticity. 

1. Introduction 

The coronavirus outbreak in Wuhan, China, in December 2019, and named COVID-19 by the World Health 

Organization (WHO), made 2020 the year of global disaster [1]. Since the first death from the disease was reported in 

January 2020, the numbers of confirmed cases and death cases have continuously increased until the vaccination 

began on Dec. 8th in the United Kingdom (UK). Currently, the numbers of confirmed cases are declining in countries 

where vaccinations have begun, such as the USA and the UK, while the numbers are still increasing or fluctuating in 

other countries where vaccinations have started late or have not yet begun. 

Symptomatic treatment and supportive therapy are used to cure the COVID-19 patients. It includes basic disease 

treatment, symptom relief, effective protective and supportive treatment of internal organs, active prevention and 

treatment of complications, and respiratory support if necessary. Researchers are working on the development of 

treatments for the disease, and countries are supporting it. As a result, several types of vaccines have developed. 

However, the drugs that can cure the disease have not yet developed. 
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After the outbreak of the disease, each country does its best to protect its people. For example, various policies are 

in place, such as limiting people gathering events, restricting overseas travel, and quarantining people from abroad to 

prevent the influx of corona from abroad. Nevertheless, the increasing trend, rate of increment, and the number of 

confirmed cases vary from country to country depending on several factors, such as culture, policy, health care, and 

social habits. Imran et al. (2020) [3] analyzed the reaction of people from different cultures to the COVID-19 and 

sentiment about their subsequent actions. The authors applied the deep long short-term memory (LSTM) to the 

extracted tweets. The damage caused by the disease is expected to appear in all fields, including the economy, society, 

culture, and emotions of individuals, in the next few years worldwide. 

There are case studies for COVID-19 [4–16], especially for Wuhan, China [4–8]. Various models for the disease 

have been studied in 2020, including mathematical models [7–19], statistical modeling [20–22], and artificial 

intelligence (AI) models [15, 22–24]. Details of the studies are presented in section 2. 

In this paper, we analyze the COVID-19 based on the number of daily confirmed cases. As the data is time series, 

we consider time series models of statistics and deep learning (DL) technology to predict the number of daily 

confirmed cases; ARIMA, generalized autoregressive conditional heteroscedasticity (GARCH), and stacked LSTM 

deep neural network (LSTM DNN). The prediction procedure of models consists of three parts; preprocessing process, 

training process, and prediction process. The min-max transformation is used to preprocess the datasets. The 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) are used to find the orders of the 

statistical models, while the sub-optimal hyperparameters of the DL model, such as the number of LSTM cells and the 

number of blocks in an LSTM cell, are found exhaustively. Data from Dec. 31, 2019, to Feb. 22, 2020, provided by 

the WHO [2], is used in the experiment. The models are applied to ten datasets of daily confirmed cases; nine 

countries across the continents and the world. Datasets of two sizes are used in the experiment to investigate the 

effects of data size and vaccination on performance. Numerical results show the effects and show the stacked LSTM 

DNN outperforms the statistical models. 

The motivation is as follows: 1) Can the statistical models and the DL techniques provide acceptable predictive 

performances for the new disease before and after vaccination? 2) Which model can predict the disease best? Several 

articles have considered predicting the disease using statistical models and ML models [e.g. 15, 20, 21–23]. Since 

these studies used short-term data of the disease, it was insufficient for learning. The number of confirmed cases 

continues to increase as the disease spread. However, it tends to decline in countries where vaccination has begun. 

Therefore, it is meaningful to apply the models with the larger datasets and investigate the effect of vaccination on 

performance. Besides, this is the first study to apply the GARCH model to the dataset of COVID-19. 

This study includes: Section 2 describes the predictive models and procedures for daily confirmed cases. Section 3 

and Section 4 present performance measurements and the experimental results, respectively, and Section 5 provides a 

conclusion. 

2. Related Works: Modeling the Disease 

The case studies for COVID-19 can be found in [4–16], especially for Wuhan, China [4–8]. For example, Li et al. 

(2020) [4] described the characteristic of positive cases, the distributions of epidemiological time delay, the disease 

doubling time, and the breeding number, based on the data of Wuhan. Lin et al. (2020) [5] proposed conceptual 

models for the disease based on the individual behavioral reaction and governmental actions, while Prem et al. (2020) 

[6] considered synthetic location-specific contact patterns to estimate the effects of physical distance measures on the 

progression of the COVID-19 epidemic. 

There are a lot of studies that investigate the models for the COVID-19 in 2020. The used methods for the model 

include the mathematical models [7–19], statistical modeling [20–22], and artificial intelligence (AI) models [15, 22–

24]. A compartmental mathematical model was proposed as a spreading model of the disease, emphasizing the 

potential for transmission of super-spreaders individuals, in Ndairou et al. (2020) [7]. It studied the threshold of 

reproduction number, local stability of disease-free equilibrium using the number, and the model's sensitivity for 

parameters. Kucharski et al. (2020) [8] considered a stochastic transmission model to estimate transmission variation 

over time. The probability of newly confirmed cases that generate outbreaks in other areas was calculated based on the 

estimation. Zhao et al. (2020) [9] estimated the reproduction number in the early stage of the disease through the curve 

of confirmed cases in China. The reproduction number was also estimated in Shen et al. (2020) [10] study through a 

dynamic model, based on Chinese data, from which the epidemic peak time and size were predicted. A new epidemic 

model that can explain the impact of health care capacity was proposed in Cakan (2020) [11]. In the model, local 

stability and global stability were studied. Wu et al. (2020) [12] introduced the susceptible-exposed-infectious 

recovered (SEIR) model to simulate the Wuhan epidemic. The authors estimated the spread of the disease nationally 

as well as globally by the model. Shah et al. (2020) [13] proposed a generalized SEIR model for the disease, in which 

the behavior of transmission of the disease was investigated under different control strategies. In the model, the 

authors considered transmissions between humans and formulated the reproduction number to analyze transmission 
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dynamics of coronavirus outbreak. Intissar (2020) [14] reinvestigated the SEIR model in Shah et al. (2020) [13] work. 

They considered the local and global stability conditions by using a reproduction number and added some control 

parameters to force the trajectories to go to the equilibria in the five-dimensional Covid-19 system. Zheng et al. (2020) 

[15] proposed an improved susceptible-infected model to estimate the variety of infection rates for analyzing the 

transmission laws and development trend. The model contains the natural language processing (NLP) module and the 

LSTM. Fanelli & Piazza (2020) [16] analyzed the temporal dynamics of disease outbreaks in China, Italy, and France. 

It indicated the universality of epidemic spreading based on the analysis of simple day-lag maps and proposed simple 

mean-field models to collect a quantitative picture of the epidemic spreading. Choi & Ki (2020) [17] considered the 

transmission model, the reproduction number, and the effectiveness of preventive measures of the disease that fits S. 

Korea through the number of confirmed cases of S. Korea. Ivorra et al. (2020) [18] proposed the disease spread 

mathematical model and investigated the detected portion among all infected cases. Chen et al. (2020) [19] developed 

a simplified transmission network model for the disease by stimulating the potential transmission from the infection 

source to the human infection, and then computed the reproduction number based on the model. Roy et al. (2020) [20] 

predicted epidemiological patterns of prevalence and incidence of the disease with ARIMA, using cumulative 

confirmed cases of the disease in Indian states. A hybrid methodology, wavelet-autoregressive integrated moving 

average (W-ARIMA), was proposed in Singh et al. (2020) [21]. They used the number of daily deaths of five countries 

to validate their method, estimated one month-ahead prediction of death cases, and compared its performance with 

ARIMA. Singh et al. (2020) [22] considered ARIMA and least square support vector machine (LS-SVM) to predict 

confirmed cases. The data consisting of daily confirmed cases of SARS-CoV-2 in the most affected five countries was 

used for modeling and predicting one-month confirmed cases of this disease. Shahid et al. (2020) [23] predicted 

confirmed cases, deaths cases, and recoveries cases of the disease through ARIMA, support vector regression (SVR), 

LSTM, and bidirectional LSTM. The study used datasets of ten countries. For the early-stage treatment of the disease, 

the analysis of chest X-rays of infected patients was a crucial step. A model, based on an Auxiliary Classier 

Generative Adversarial Network (ACGAN), was developed to generate image data in Waheedi et al. (2020) [24].  

There are several survey articles on the disease [25–27]. Latif et al. (2020) [25] surveyed various research 

activities on the disease, including statistical and artificial intelligence (AI) modelings and data visualization, which 

can be used in data management, such as storing, processing, training, predicting, and insight extracting. Emphasizing 

the importance of responding to the COVID-19 outbreak and preventing the severe effects of the disease pandemic, 

Pham et al. (2020) [26] overviewed AI and big data in various areas, identified the applications aimed at fighting 

against COVID-19, highlighted challenges and issues associated with state-of-the-art solutions, and recommended for 

effective control of the COVID-19 situation. Chamola et al. (2020) [27] investigated the key aspects of the disease, 

focusing on its impact on the global economy, and considered the use of technologies, including the internet of things 

(IoT) and AI, to mitigate the outbreak of disease. 

3. Materials and Methods 

Since the number of daily confirmed cases of COVID-19 is a time series, we denote it as a process { } .t tX
 
For 

the analysis of time series, the statistical models, such as ARIMA and GARCH, have been considered traditionally, 

and the NN models, such as multi-layer perceptron (MLP) and LSTM recurrent neural network (RNN), have been 

used recently (e.g. Kim (2020 and 2021) [28, 29]). In this study, we consider two statistical models and one DL model. 

We define terms and explain models and prediction procedures of the models in this section. Firstly, we define n-step 

ahead prediction as follows: 

Definition 1. The n-step ahead prediction of { }t tX
 
is given by E( | ), , t n tX n the conditional expectation of 

t nX   
given that t  

is known. Here t  
is the entire history up to time t  generated by{ : }.sX s t

 

3.1. Predictive Models and Prediction Procedures of COVID-19: ARIMA and GARCH 

Definition 2. A time series t  
is said to be white noise if the expectation, variance, and the auto-covariance function 

of t  
are given by 0,tE 

 
( ) ,tVar   

 
and ( ) ( , ) 0,t t hh Cov    

 
respectively, for all 0.h   Here ( )h

 
is given 

by ( ) ( ) ( ).t t h t t hE E E      

If a time series 
t  

is white noise, we denote it by { } ~ (0, (0)).t WN   

Definition 3. The process { }t tX   
is called ARMA(p,q) if it satisfies 

0 1 1
,

p q

t i t i t j t ji j
X X      

                                                (1) 

where 2{ } ~ (0, ), 0,   t WN
 
and i and i are some constants. 
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Definition 4. The process { }t tX   
is called ARIMA(p,1,q) if 

1t t tX X X   
 
is stationary and invertible ARMA(p,q). 

The process { }t tX 
is called ARIMA(p,d,q) if d

tX
 
is stationary and invertible ARMA(p,q).  

In the definition 4, 
d  is the operator defined by (1 ) ,dB

 
where B is a back-shift operator given by

1.t tBX X 
 

For example, 2 2

1 2(1 ) 2 .t t t t tX B X X X X        Definitions of ‘stationary’ and ‘invertible’ can be found in 

Shumway & Stoffer (2017) [30] research. 

Definition 5. The process { }t tX   
is called GARCH(p,q) if it satisfies the following conditions: 

2 2 2

01 1

( )  , ~ (0,1),independent of 
,

( ) + +             

t t t t t

p q

t i t i j t ji j

i X IID

ii X

   

      




  
                                          (2)      

where
0 0,  0, 0,1 ,1 .i j i p j q       IID(0,1) in Equation 2 means that 

t  
follows independent identical 

distribution with mean zero and variance one, for all t. The process such that d

tX
 
is GARCH(p,q), we call it 

GRACH(p,d,q). 

The statistical methods dealing with time series require testing the stationary property of data in advance. If a 

given data is non-stationary, take the stationary test to the first differenced dataset of the data, { }.tX The test repeats 

until getting the stationary process by increasing d. If the test passes, we have to find the model's orders of the process. 

ARIMA and GARCH generally use the ACF and the PACF to find the orders. The determined orders are used in the 

training process, and the time series is predicted based on the trained results.  

Let 
1{ } 

N

t tX
 
be a given dataset, where N is the number of data. Algorithm 1 describes the prediction procedure of 

ARIMA (GARCH). 

Algorithm 1. Prediction procedure of ARIMA (GARCH) 

1. Test the stationarity of data
1{ } 

N

t tX . If it is non-stationary, take the difference of data 1

1 1{ } 

    N

t t t tX X X
 
and test the 

stationarity of 1

1{ } 

 N

t tX .
 
 

2. Find the orders of ARIMA by ACF and PACF. 
3. Training process: 

3.1 Divide 1

1{ } 

 N

t tX
 
 into two disjoint subsets 1 1

1{ } 

 N

t tX  and 
1

1{ } ,

 N

t t NX  where 1 1 ( 1)   N N r  for initially given training 

ratio (0,1).r  

3.2 Fit the model by using the orders. 

4. Prediction process: Generate the prediction of difference 
1

^
1{ } 



N

t t NX
 
by the fitted model. Take the inverse transform of 

1

^
1{ } 



N

t t NX
 

and then obtain the predicted time series 
1

^
1{ } .



N

t t NX   

5. Compute the performance measures with 
1 1{ }  

N

t t NX
 
and 

1

^
1{ } .



N

t t NX  

We will explain Algorithm 1 based on the dataset of daily confirmed cases. Figure 1 shows the number of daily 

confirmed cases of the world and nine countries over 420 days from Dec. 31, 2019, to Feb. 22, 2021. Then, 
tX
 
is the 

number of confirmed cases at time t and 420N  (step 1). In China, tX  was suddenly increased at the beginning of 

the outbreak and then declined after sixty days of the first outbreak. tX s for other countries tended to increase with 

fluctuations. After vaccination begins in the UK and the USA, tX s for both countries tended to decline. All the 

datasets considered are checked non-stationary, and the datasets consisting of the first or the second difference 

between daily confirmed cases turned out to be stationary (step 1). Figure 2 illustrates the first difference tX (step 1) 

of the world dataset, while Figure 3 illustrates the ACF and PACF with 60 lags for the set (step 2). Based on Figure 3, 

(1,0) or (5,0) can be considered as (p, q) with 1d  in ARIMA(p,d,q) model for the dataset. The ARIMA model is 

fitted based on the training set (step 3), and then future values for the difference of time series are generated, which is 

1

^
1{ } 



N

t t NX  (step 4).  
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Figure 1. The numbers of daily confirmed cases of COVID-19: World and nine countries for 420 days 

 

Figure 2. The first difference between daily confirmed cases of COVID-19: World 

 

Figure 3. ACF and PACF for daily confirmed cases with 60 lags: World 

3.2. Predictive Models and Prediction Procedures of COVID-19: Stacked LSTM DNN 

LSTM is a model that considers the vanishing gradient problem in an RNN, which is dealing with time series. 

Figure 4 illustrates the structure of an LSTM cell. 
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Figure 4. The structure of an LSTM cell  

The functions of gates in Figure 4 are given by: 

1( [ ] ),  W bt f t t ff S h ,X 1( [ ] ,  W bt i t t ii S h ,X )
1tanh( [ ] ),  W bt C t t CC h ,X

1( [ ] ),  W bt o t t oo S h ,X
1 ,t t t t tC f C i C     and tanh( ), t t th o C  

(3) 

where S and tanh are the sigmoid function and hyperbolic tangent function defined by: 

1
( )

1 x
S x

e



  and  tanh( ) ,

x x

x x

e e
x

e e









                                            (4)                                                        

respectively. 
W
 
and 

b
 
are the weight matrix and bias vector for gate ,  respectively, and determined during the 

training process in such a way as to minimize the cost function.   and   represent entry-wise multiplication 

(Hadamard product) and entry-wise addition (direct sum), respectively. The subscripts of the matrices in Equation 3 

only denote the gates. We deleted the notations describing layer and iteration number in the matrices for notational 

simplicity. A detailed explanation of LSTM and the explicit formulas of the functions in Equation 3 can be found in 

several articles, including Azzouni et al. (2017) [31]. 

LSTM cells can be stacked in a network to enhance prediction accuracy. Figure 5 illustrates the structure of a 

stacked LSTM DNN. All of the LSTM cells in Figure 5 have the same structure as shown in Figure 4. The dataset 

inputs to LSTM(1) and the output of LSTM(1), h1, is passed to LSTM(2), and the same procedure is performed up to 

the kth LSTM stack. At the end of the LSTM cell, hk converts to the output via softmax. Algorithm 2 explains the 

prediction procedure of LSTM DNN. 

input LSTM(1) softmax outputLSTM(k)LSTM(2)
h1 h2 hk-1 hk

 
Figure 5. The structure of the stacked LSTM DNN 

Algorithm 2. Prediction procedure of LSTM DNN 

1. Preprocess dataset 
1{ } 

N

t tX : Let 
,pre 1{ } 

N

t tX
 
be the preprocessed dataset. 

2. Divide the preprocessed dataset into training and test sets: 1

1,pre 1 ,pre tr 1 ,pre te 1{ } {{ } ,{ } },    NN N

t t t , t t , t NX X X  where

1  N N r for initially given training ratio (0,1).r  

3. Train LSTM DNN by 1

,pre tr 1{ } 

N

t , tX
 
to minimize the cost function. 

4. Predict 
1,pre te 1{ }  

N

t , t NX
 
by the trained network. 

5. Compute the performance measures. 
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In step 1, the dataset is pre-processed by min-max transformation (MMT) defined by: 

1

,pre

11

min( )
( ) .

max( ) min( )

 

  


 



t t
t N

t t

t t
t Nt N

X X
X MMT X

X X
                                       (5) 

The mean squared error is used as the cost function in step 3. Table 1 summarizes the notation. 

Table 1. Summary of notations 

Notation Description Notation Description 

tX  Raw data p, q Orders of ARIMA & GARCH 

,pretX  Min-max transformed data 
^

tX  1-step ahead prediction of
tX  

t  History up to t , ,i j t    Parameters in statistical models 

W  Weight matrix of gate   S Sigmoid function 

b  Bias vector of gate   r Training ratio 

3.3. Performance Measures 

To measure the accuracy of prediction, we consider the mean absolute error (MAE), root mean squared error 

(RMSE), normalized mean absolute error (NMAE), and the normalized mean squared error (NMSE), which are 

defined by: 

1 1

^

^
1/ 2

1 11 1

| |1 1
| |, , ,

   


   

 
 

N N
j j

j j

j N j N j

X X
MAE X X RMSE MSE NMAE

N N N N X
and

test

,
MSE

NMSE
M

                   (6)  

respectively, where MSE and Mtest is are given by 𝑀𝑆𝐸 = ∑ (𝑋𝑗 − 𝑋�̂�)
2
/(𝑁 − 𝑁1)

𝑁
𝑗=𝑁1+1

and 𝑀test = ∑ 𝑋𝑗/(𝑁 − 𝑁1)
𝑁
𝑗=𝑁1+1

, 

respectively.  

We define another measure, percentage improvement (PI), to compare the performance of two models as follows: 

2

1 2

1

( )
( , ) 1 100,

( )





 
   
 

M
PI M M

M
                                             

(7) 

where ( )M is the measured performance of model M, such as MAE and RMSE.
1 2( , ) 0PI M M   

1 2( ( , ) 0)PI M M   

implies that model M1 (M2) improved M2 (M1) by 
1 2( , )PI M M % for the concerned measure. 

4. Results and Discussion 

4.1. Experimental Setting 

We conducted the experiments using Python 3.6 and Tensorflow v.1.7.0 on an Intel Core i7, 16 GB RAM. The 

data used is the daily confirmed cases of COVID-19 for 420 days from Dec. 31, 2019, to Feb. 22, 2021, extracted 

from the dataset obtained through GitHub [32], provided by the WHO [2]. The datasets of the world and nine 

countries shown in Figure 1 are selected. The selection intended to include countries from all continents, where culture 

and policies on the disease are different. The countries are Argentina, Australia, China, Egypt, Germany, India, S. 

Korea, the UK, and the USA, and the world dataset is used to investigate the global trend of the disease. All three 

models are applied to each dataset. Besides the ten datasets, we consider a portion of data from each dataset to 

investigate the effect of data size on performance. The selected portion is for 247 days from Dec. 31, 2019, to Sept. 2, 

2020. From now on, we call this dataset a small-size dataset. It is observed that performances depend on training ratio 

and 0.8 ~ 0.9r  turns out to provide better performances than other ratios. Therefore, we mainly use 0.8r  in the 

experiments and use 0.9 for comparison of ratio effect only. We use the sigmoid for activation function, 100 epochs, 

and one batch size in the LSTM cells. Since a small-future-step predicts better, we consider a 1-step ahead prediction 

in the experiment. 

4.2. Reports of Various Experimental Results 

The orders of statistical models are determined by the ACF and the PACF, while the optimal hyperparameters of 

LSTM DNN, such as the numbers of LSTM cells and blocks of a cell, are obtained through exhaustive search. Let 

(p,d,q) and (m1,m2) be the obtained orders for statistical models and the hyperparameters for LSTM, which minimize 
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NMAE and NMSE or MAE and RMSE. Here m1 and m2 are the numbers of LSTM cells and block in an LSTM cell, 

respectively. From now on, we call the (p,d,q) and (m1,m2) optimal parameters. In the experiment, we considered up to 

five LSTM cells and fifteen blocks in an LSTM cell. We observed that one LSTM cell provides the best NMAE, 

except for three countries. 

Figure 6 shows the values of NMAE and NMSE for varying numbers of blocks with one LSTM cell for the two 

different sizes of datasets. Figures 6(a) and 6(b) are obtained by the small-size datasets and a total of 470 days datasets, 

respectively. It shows that the fluctuations of NMAE and NMSE are large for small-size datasets, which seems due to 

more sensitivity of hyperparameters for small-size datasets. On the other hand, the values of NMAE and NMSE with 

small-size datasets are less than those with large-size datasets. It seems due to the relatively small changes in the 

predicted values of the small-size datasets since the increments of confirmed cases of the small-size datasets are small 

compared to the increments of confirmed cases of the total datasets.  

(a) 2019.12.31~2020.09.02

(b) 2019.12.31~2021.02.22
  

Figure 6. The performance measures values for varying number of blocks with one LSTM cell 

Figure 7 shows the daily confirmed cases of four datasets and their predictions of the three models using the 

optimal parameters. Black and red lines represent raw data and predictions, respectively. In China, many confirmed 

cases occurred in the early stage of the outbreak, and those seem to affect the model, which appears as the difference 

between predicted values and actual values. Table 3 will show it explicitly. The increment of confirmed cases in S. 

Korea was limited in the early stage of the disease. It dues to the policies that identify and disclose the paths of 

infected people and mandate the mask-wearing. However, it started to increase due to a not predicted public meeting 

held on August 15, 2020, and the relief of distance policy from the second stage to the first stage from Oct. 12. The 

distance policy change resulted in group infections through nursing hospitals and church meetings. The number of 

daily confirmed cases in the USA has soared in the early stage of the disease. It seems due to the culture of wearing 

masks. The number increased from 646.2 per 1 million people on Dec. 15, 2020, when vaccination began, to 753.3 on 

Jan. 11, 2021. Since then, it has decreased with slight fluctuation. According to the figure, LSTM DNN is better than 

the statistic models for the datasets.  
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(c) LSTM DNN (1,8)(b) GARCH (1,1,1)(a) ARIMA (1,2,1)

(a) ARIMA (1,2,0) (b) GARCH (1,2,0) (d) LSTM DNN (1,8)

(a) ARIMA (1,1,1) (b) GARCH (4,2,1) (c) LSTM DNN (2,2)

(c) LSTM DNN (1,14)(b) GARCH (1,2,0)(a) ARIMA (1,1,0)

 

Figure 7. Raw data and 1-step ahead prediction of daily confirmed cases: World and three countries (r = 0.8) 

Table 2 presents the corresponding NMAE and NMSE of Figure 7 and those of other countries. The value in the 

‘Optimal’ column is an optimal parameter for the dataset. For example, for China corresponding to Figure 7, NMAE 

and NMSE for LSTM DNN are obtained by 0.2468 and 0.3190, respectively, and (1,1,1), (4,2,1), and (2,4) are the 

optimal parameters that provide the best NMAE for ARIMA, GARCH, and LSTM DNN, respectively. We notice one 

LSTM cell, m1=1, is optimal for the datasets, except for three countries. The number of blocks in a cell varies 

depending on the dataset. Table 3 presents MAE and RMSE. We observed (p,d,q) that minimizes NMAE may not 

minimize MAE. The optimal hyperparameters for MAE of LSTM DNN are (2, 2), different from (2, 4) for NMAE.  

Table 2. Comparison of best NMAE and NMSE with optimal parameters (r = 0.8) 

              Model 

 Country 

ARIMA GARCH LSTM DNN 

Optimal NMAE NMSE Optimal NMAE NMSE Optimal NMAE NMSE 

World (2,1,0) 0.2372 0.2868 (1,2,0) 0.2646 0.2705 (1,14) 0.1384 0.1695 

Argentina (2,1,0) 0.3227 0.4039 (1,2,0) 0.4330 0.4682 (2,6) 0.2595 0.3131 

Australia (7,2,1) 0.7063 0.7217 (7,1,1) 0.8375 0.7524 (2,4) 0.5957 0.6390 

China (1,1,1) 0.9624 0.5824 (4,2,1) 0.8056 0.6098 (2,4) 0.2468 0.3190 

Egypt (0,1,0) 0.3680 0.5906 (1,1,0) 0.4491 0.6446 (1,12) 0.0470 0.0785 

India (1,2,0) 0.9402 0.7848 (1,2,0) 1.5623 1.3186 (1,2) 0.1784 0.3512 

Germany (1,2,0) 0.6894 0.9290 (1,2,2) 1.4499 0.8222 (1,10) 1.1084 0.5849 

S. Korea (1,2,1) 0.3382 0.5679 (1,1,1) 0.3363 0.5456 (1.8) 0.1465 0.2154 

UK (1,1,1) 0.4482 0.7285 (8,2,1) 0.4276 0.7096 (1,8) 0.1401 0.2018 

USA (1,2,0) 0.3993 0.3866 (1,2,0) 0.4232 0.3721 (1,8) 0.1494 0.1971 
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Table 3. Comparison of best MAE and RMSE with optimal parameters (r = 0.8) 

                Model 

Country 

ARIMA GARCH LSTM DNN 

Optimal MAE RMSE Optimal MAE RMSE Optimal MAE RMSE 

World (1,1,0) 135008.05 162471.80 (1,2,0) 132156.17 153008.71 (1,14) 61783.26 76964.19 

Argentina (7,1,1) 2206.05 2642.88 (1,2,0) 2985.45 3596.55 (2,6) 1670.65 2403.63 

Australia (7,2,1) 6.24 8.80 (1,1,1) 6.87 9.15 (2,4) 6.03 7.80 

China (1,1,1) 42.88 54.65 (4,2,1) 45.84 57.22 (2,2) 19.70 29.15 

Egypt (0,1,0) 331.42 442.05 (1,1,0) 385.81 482.41 (1,12) 37.98 59.10 

India (1,2,0) 12992.52 14516.73 (1,2,0) 22483.93 24388.98 (1,2) 3285.32 6419.35 

Germany (1,1,0) 8452.58 11189.64 (1,2,2) 10564.81 13014.75 (1,10) 6599.46 9195.28 

S. Korea (4,1,1) 240.45 310.12 (1,1,1) 251.64 344.48 (1.8) 99.24 136.29 

UK (1,1,1) 16155.33 21721.85 (1,1,1) 15456.04 20984.41 (1,8) 4349.66 6057.66 

USA (1,2,0) 58409.90 66901.96 (1,2,0) 54921.64 64402.18 (1,8) 24381.41 34078.02 

Table 4 presents the performance improvements between models, obtained based on Table 3. It shows that LSTM 

improves ARIMA and GARCH by 3.36%~88.54% (9.05%~86.63%) and 12.22%~90.15% (14.15%~87.74%), 

respectively, for MAE (RMSE), while one of ARIMA and GARCH is better depending on data. For example, for the 

data of Egypt, LSTM improves ARIMA and GARCH by 88.54% (86.63%) and 90.15% (87.74%) for MAE (RMSE), 

respectively, and GARCH is better than ARIMA for the data of UK and USA. 

Table 4. Comparison of percentage improvement (r = 0.8, unit: %) 

                 PI 

 Country 

PI(LSTM,ARIMA) PI(LSTM, GARCH) PI(ARIMA, GARCH) 

MAE RMSE MAE RMSE MAE RMSE 

World 54.23 52.62 53.24 49.69 −2.15 −6.18 

Argentina 24.26 9.05 44.04 33.16 26.10 26.51 

Australia 3.36 11.36 12.22 14.15 9.17 3.82 

China 54.05 44.66 57.02 49.05 6.45 4.49 

Egypt 88.54 86.63 90.15 87.74 14.09 8.36 

India 74.71 55.77 85.38 73.67 42.21 40.47 

Germany 22.74 17.82 37.53 29.34 19.99 14.02 

S. Korea 58.72 56.05 60.56 60.43 4.44 9.97 

UK 73.07 72.11 71.85 71.13 −4.52 −3.51 

USA 58.25 49.06 55.60 47.08 −6.35 −3.88 

Table 5 compares our results with existing results. The datasets used in Singh et al. (2020) [21, 22] are the number 

of daily death cases from Jan. 21 to April 11, 2020, and the number of daily confirmed cases from May 10 to June 7, 

2020, respectively. Singh et al. (2020) [21] considered ARIMA and wavelet-ARIMA (W-ARIMA), while Singh et al. 

(2020) [22] considered ARIMA and LS-SVM, and both used 0.8 for the training ratio. Both studies obtained the 

orders of ARIMA in the same way as ours. The datasets used in Shahid et al. (2020) [23] are the numbers of daily 

confirmed cases, deaths cases, and recovered cases from Jan. 22 to May 10, 2020. The study considered three models, 

ARIMA, SVR, and LSTM, with a training ratio of 0.7. In the ARIMA model, (p,d,q)=(1,1,1) was used. The values in 

the table are results for the daily confirmed cases. 

Direct comparisons with these studies seem difficult because the data and training ratios used in the experiments are 

different. However, we can use the existing measurement ranges as the criterion for our results. Since existing results 

were obtained with short-term data before vaccination, we also used a similar small-size dataset. Besides, we 

considered different training ratios for the small-size data to investigate its effect on performance. For the small-size 

dataset, optimally obtained orders and hyperparameters are used, which are (1,1,1) ((1,2,0)) for ARIMA and GARCH 

and (1,8) ((1,4)) for LSTM DNN for the data of the UK (USA) for both training ratios. The table shows that MAE and 

RMSE for the small-size dataset are much less than those for the large dataset. It seems due to the numbers of daily 

confirmed cases in the small-size dataset, which are less than those in the large dataset. That is, training with a small-

size dataset is suitable to predict a small number of confirmed cases. While, training a training set, in which the small 

numbers of confirmed cases contained more than the large numbers of confirmed cases, seems not suitable to predict 

the large numbers of confirmed cases. Based on this observation, we can assume that a large dataset may yield the 

worse result. However, this cannot be assumed in general, as optimal parameters may vary depending on datasets. 
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Besides, vaccination seems to affect performance. It is noteworthy that the results with the full dataset are better than 

those of Singh et al. (2020) [22]. Several reasons can be considered, such as vaccination and different orders and 

training ratios. 

Table 5. Comparison with existing results 

Comparison Data Model r 
UK USA 

MAE RMSE MAE RMSE 

This study 

2019.12.31 
~2020.09.02 

ARIMA 

0.9 

249.52 304.44 16465.28 17690.02 

GARCH 425.92 515.01 15609.36 17992.26 

LSTM DNN 262.85 292.89 6044.48 7067.24 

ARIMA 

0.8 

520.77 583.50 10054.21 11782.22 

GARCH 384.89 465.86 11505.35 14172.12 

LSTM DNN 195.98 253.31 5987.86 7823.42 

2019.12.31 

~2021.02.22 

ARIMA 

0.8 

16155.33 21721.85 58409.90 66901.96 

GARCH 15456.04 20984.41 54921.64 64402.18 

LSTMDNN 4349.66 6057.66 24381.41 34078.02 

Singh et al. (2020) 
[21] 

2020.01.21 
~2020.04.11 

ARIMA 0.8 
 

1316 1724 2822 4103 

W-ARIMA 193 253 1341 1974 

Singh et al. (2020) 

[22] 

2020.05.10 

~2020.06.07 

ARIMA 
0.8 

2750 3381 21339 31972 

LS-SVM 3520 3964 18405 22667 

Shahid et al. (2020) 

[23] 

2020.01.22 

~2020.05.10 

ARIMA 

0.7 

83359.04 98881.48 34867.61 61859.84 

SVR_Poly 32152.97 35442.09 244528.11 273851.39 

SVR_RBF 33336.29 37554.32 257046.10 298513.60 

5. Conclusion 

The numbers of daily confirmed cases of COVID-19 are analyzed and predicted by three models: ARIMA, 

GARCH, and stacked LSTM DNN. Datasets of two sizes are used in the experiment to investigate the effects of data 

size and vaccination on performance. Experimental results show that LSTM DNN predicts best for all datasets in 

terms of MAE (NMAE) and RMSE (NMSE), while the performances of ARIMA and GARCH depend on datasets. 

The NN with one LSTM cell outperformed the NN with more LSTM cells in many cases, which should be 

investigated later. We will expand this study to the NN models, including GAN and meta-learning techniques, and the 

datasets including more components, such as the number of daily deaths of the disease. The proposed method also can 

be applied to image data of the disease, such as chest X-rays of patients. 
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