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Abstract 

The ongoing pandemic due to the novel SARS-CoV-2 disease (COVID-19) has exerted a great toll on human health. The 

SARS-CoV-2 is the third most pathogenic human CoV after SARS-CoV-1 and MERS-CoV, which is classified within 

the genus Betacoronavirus. Though the actual source of its origin and transmission is still unclear, genetic analysis has 

shown its very close similarity (~96%) with bat SARS-like CoV. SARS-CoV-2 is a spherically-icosahedral virus with a 

plus-sense single-strand RNA (~30 kb) genome defined into thirteen open reading frames, which encode 2 non-structural 

polyproteins, 4 structural proteins and 6 accessory proteins. Of its structural proteins the ‘S1’ subunit of spike (S) 

contains the cellular ACE-2 receptor binding domain (RBD) whereas the ‘S2’ subunit is required for cell membrane 

fusion. The membrane (M) protein participates in cell-fusion whereas envelope (E) is necessary for virion assembly and 

morphogenesis. The non-structural polyproteins (pp1a and pp1b) undergo proteolytic processing to produce a total of 16 

small proteins, which are involved in mRNA synthesis and replication. Of the accessory proteins (3a, 6, 7a, 7b, 8 and 9b), 

few are known to modulate host-innate immunity. Interestingly, ‘3b’ is absent in SARS-CoV-2 that significantly 

differentiates it from other human CoV. Detection of several novel mutations in ‘3a’, ‘3b’ and ‘ORF8’ proteins, notably 

in the ‘S’ RBD strongly suggest SARS-CoV-2 enhanced cell attachment and facilitated entry, its high infectivity and 

disease severity in humans. The recent emergence of highly contagious SARS-CoV-2 RBD variants in the United 

Kingdom (B.1.1.7 strain), South Africa (B.1.351 strain) and Brazil (P.1 strain), and their subsequent spread to 

other counties have raised serious concerns. 
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1. Introduction 

In the recent decades, incidences of devastating viral epidemics have marked the Asia-Pacific region as the global 

hot-spot for emerging new pathogenic viruses [1]. The novel severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) disease or COVID-19 pandemic first reported in China in Dec. 2019, has affected nearly 114 million people, 

with over 2.5 million deaths worldwide [2-4]. SARS-CoV-2 is the seventh human infecting and third highly 

pathogenic human CoV after the SARS-CoV-1 and Middle-East respiratory syndrome CoV (MERS-CoV) [4, 5]. The 

human-to-human direct transmission of SARS-CoV-2 through multiple modes, such as nasal droplets, oral mucus and 

aerosols, including fomites has been confirmed [6, 7]. SARS-CoV-2 has an incubation period of 2-14 days with 

symptoms of cough, fever, headache and shortness of breath, which may progress to mild-to-severe pneumonia and 

death [4, 8]. COVID-19 patients, mostly of old age group or with comorbidity like pulmonary, cardiac, renal or 
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hepatic disorders have shown higher mortality rate than those with pneumonia only. Among COVID-19 positive 

cases, about 80% individuals remain asymptomatic, 15% with hospitalization and 5% develop acute respiratory 

distress syndrome (ARDS) or multi-organ failure [9]. In addition, a good proportion of COVID-19 patients have also 

shown evidences of digestive and hepato-biliary symptoms, where high amounts of SARS-CoV-2 genomic RNA has 

been detected in gastrointestinal, rectal and stool specimen [10-12]. Further detection of SARS-CoV-2 RNA in 

municipal or waste water samples has suggested its plausible fecal-oral transmission through contaminated water [13]. 

In general, human CoV do not cause life-threatening disease. However, because of the zoonotic origin of SARS-

CoV-2 similar to SARS-CoV-1, humans lack pre-existing natural immunity i.e. ‘herd-immunity’ against it [14]. In 

naïve population therefore, exposure to SARS-CoV-2 leads to a much delayed time to develop adaptive-immune 

responses. Also, unlike SARS-CoV-1, most of the spread of SARS-CoV-2 occurs through asymptomatic infection 

[15-17], which is a bottleneck for its quick containment. Moreover, unlike SARS-CoV-1 and MERS-CoV, the precise 

mechanism of modulation of host-innate immune responses and severe pathogenesis by SARS-CoV still remains 

elusive [18]. Nonetheless, within a year of COVID-19 health crisis, we have a remarkable understanding of its 

epidemiology, clinical presentations, immune-pathobiology, treatments and preventive strategies. Currently plasma or 

antibody based rapid-test kits and reverse-transcription polymerase chain reaction (RT-PCR) are the routine diagnostic 

tools to identify COVID-19 positive cases. In the absence of specific therapeutics, several repurposed drugs are 

currently under clinical trials or approved for emergency use [19, 20]. Fortunately, of the leading vaccine candidates 

under final stages of trials, at least seven are now granted approval in some countries. 

2. SARS-CoV-2 genomic organization 

The novel SARS-CoV-2 together with SARS-CoV-1, MERS-CoV, HCoV-OC43 and HCoV-HKU1, have been 

classified within the genus Betacoronavirus. SARS-CoV-2 is a spherically-icosahedral and enveloped virus ranging 

from 80 to 120 nm [21]. It has a linear positive-sense, single-strand RNA (~29.9 kb) genome that is 5’-capped and 3’-

polyadenylated, and transcribes into a set of several sub-genomic mRNAs with a common 5’-leader sequence [21]. 

SARS-CoV-2 genome is defined into 12 active open reading frames (ORFs; 5’-3’) comprising of two non-structural, 

four structural and six accessory protein coding sequences. Genomic sequences and phylogenetic analysis of the 

isolated SARS-CoV-2 have revealed its very close similarity (~96%) with bat SARS-like-CoV (bat-SL-CoVZC45, 

bat-SL-CoVZXC21 and SL-CoV-RaTG13), indicating its zoonosis associated with horseshoe bats [22, 23]. The viral 

RNA genome consists of 13 open reading frames (ORFs), which encode four structural, two non-structural 

polyproteins producing sixteen processed products, and seven accessory proteins (Figure 1A) [24].  

 
Figure 1. A graphic representation of the genomic and structural organization of SARS-CoV-2. (A) Genomic RNA showing 
the open reading frames (5’-3’) encoding non-structural replicase polyproteins (pp1a and pp1b) and their processed 

products, structural proteins (spike, S; envelope, E; membrane, M; and nucleocapsid, N) and accessory proteins (3a, 3b, 6, 
7a, 7b, 8 and 9b). (B) virion structure. Adapted and modified with permission [12, 20]. 
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3. Structural Proteins 

Of the four encoded structural proteins, the club or pear-shaped spike (S) proteins bind to cell receptor angiotensin-

converting enzyme 2 (ACE2) whereas envelope (E) and membrane (M) proteins form the viral shell or envelope 

(Figure 1B). The nucleocapsid (N) proteins form the viral capsid in which the genomic RNA is packaged. Notably, the 

characteristic structural projections known as hemagglutinin-esterase (HE) proteins located beneath the spikes in some 

betacoronaviruses are absent in SARS-CoV-2 [21]. The ‘S’ protein is a large type I trans-membrane glycoprotein that 

is present on the outer surface of the virion, and gives a crown-like appearance that has earned it the name 

‘coronavirus’ [23]. The SARS-CoV-2 ‘S’ protein shares ~76% sequence identity with that of SARS-CoV-1 and ~ 80% 

identity with bat-SL-CoV [24, 25]. ‘S’ protein has two structural subunits (S1 and S2) where the ‘S1’ subunit contains 

the ACE2-binding domain (RBD) and the ‘S2’ subunit contains structural elements viz., a membrane fusion peptide 

(FP), an internal fusion peptide (IFP), two heptamer repeats (HR) and a trans-membrane domain (TM) required for 

cell membrane fusion [26]. Notably, the SARS-CoV-2 ‘S1’is highly variable with nearly 70% identity to those of bat-

SL-CoV and SARS-CoV-1. In contrast, ‘S2’ is highly conserved and shares up to 99% identity with that of bat-SL-

CoV and SARS-CoV-1 [27]. Interestingly, the SARS-CoV-2 S1-S2 junction sequences contain a ‘furin-like’ cleavage 

site, as a result of 12-nucleotide insertion, not found in bat-SL-CoV and SARS-CoV-1 [27, 28]. In addition, of the six 

residues located in RBD, five differ between SARSCoV-2 and SARS-CoV-1, suggesting that the novel SARS-CoV-2 

spike protein binds to ACE2 more strongly than that of SARS-CoV-1, hence making the virus more infectious to 

humans [27-30].  

The ‘E’ protein is a small glycoprotein that plays a critical role in the assembly and morphogenesis of virions 

within the infected cell [31]. The ‘M’ protein is a trans-membrane glycoprotein and is involved in virion 

morphogenesis and maturation through interacting with other structural proteins [32]. The ‘N’ is a phosphoprotein that 

is highly conserved among SARS-CoV-1 and bat-SL-CoV, and plays a crucial role in RNA encapsidation, capsid 

structure stabilization, replication and transcription. Recently, high-resolution crystal structure of SARS-CoV-2 

nucleocapsid (N2b domain) has revealed its compact intertwined architecture and self-assembly properties very 

similar to that of SARSCoV-1 and MERS-CoV [33]. Though not established in COVID-19 patients, it has been 

reported to be highly antigenic in about 90% of SARS-CoV-1-infected individuals [34]. 

4. Non-structural Proteins 

The non-structural replicase proteins are translated as two large polyproteins (pp1a and pp1b) that further undergo 

proteolytic cleavage to produce 16 individually active small proteins [35]. The ‘pp1a’ is processed to generate 11 

proteins (nsp1–nsp11) whereas ‘pp1b’ produces 5 proteins (nsp12–16). Non-structural proteins of SARS-CoV-2 are 

involved in viral RNA transcription and replication, including modulation of host innate immunity [33]. However, the 

precise functions of nsp2 and nsp11 still remain elusive [36]. Due to insignificant differences between pp1a/b of 

SARS-CoV-2 and those of other betacoronaviruses, the pp1a/b of SARS-CoV-2 has not been thoroughly analyzed. 

Nonetheless, a 42 amino acid insertion in SARS-CoV-2 ‘pp1a/b’ papain-like protease region has been reported 

recently [37]. 

5. Accessory Proteins 

In addition to the structural and non-structural proteins, seven accessory proteins (3a, 3b, 6, 7a, 7b, 8 and 9b) are 

also synthesized by all betacoronaviruses, and they are mainly involved in countering host innate immune system. 

However, in a recent sequence analysis of different betacoronavirus genomic RNAs, SARS-CoV-2 has shown 

insertion of six stop codons leading to aborted translation of ‘3b’ [28]. This observation has suggested the number of 

accessory proteins to be six instead of seven and therefore, consolidating the number of all synthesized proteins to 

twenty six. Also, SARS-CoV-2 significantly varies in the conserved aggregation motif (VLVVL), including deletion 

of the diacidic motif (XDE) within ‘3a’ as compared to SARS-CoV-1, bat-SL-CoV and civet-SL-CoV [28, 37]. 

6. Significant Mutations in SARS-CoV-2 Genes and Proteins 

Approximately 80% of human infecting viruses are zoonotic, which initially poorly adapt and replicates in a new 

host or cross species-barrier [1]. RNA viruses, due to the high replication-error rate (~10-4 error/site/cycle) of their 

RNA polymerase are more genetically diversified than DNA viruses [1]. Because SARS-CoV-2 is newly introduced to 

humans, we have limited knowledge on the mechanism(s) underlying its high infectivity and pathogenesis in humans. 

Nonetheless, ample of recent comparative RNA and protein sequence analyses has reported several mutations in 

different SARS-CoV-2 isolates, suggesting their crucial roles in high infection rates and disease severity [28, 39-44]. 

Most importantly, substitution mutations in SARS-CoV-2 ‘S’ RBD residues, including other unique mutations in 

RBM as well as introduction of furin-like sequences have been suggested for its strong binding with ACE-2 and high 

infectivity [27, 28, 44, 45]. Notably, proteolytic cleavage of ‘S’ protein at furin-site leads to its open conformation that 

gives advantage of enhanced binding to host ACE-2 [27]. This has been supported by neuropilin-1 mediated cleavage 

of SARS-CoV-2 furin towards its significant improvement in ACE-2 binding [46].  
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Very recently, comparative sequence analysis of the four structural and ‘ORF8’ proteins of 100 SARS-CoV-2 

isolates of different countries has revealed thirteen substitutions and/or deletion in ‘S’, three substitutions in ‘N’, and 

one substitution in ‘M’ protein [47]. Another such study has reported frequent mutations in ‘S’, ‘N’, ‘ORF1ab’, and 

‘ORF8’ in twenty SARS-CoV-2 isolates, and evaluated their significance in protein stability and functionality in 

relation to virus transmission [40]. Further sequence analysis of SARS-CoV-2 isolates, of Russia and other countries 

has revealed a set of seven common mutations in ‘S’ and ‘N’ proteins, suggesting their role in varying patterns of 

spread [42]. Analysis of SARS-CoV-2 isolates within the United States has identified 921 mutations that included 487 

missense, 348 synonymous, 66 intergenic, 4 in-frame deletions, and 5 nonsense insertions/deletions in at least three 

samples [48].  

Recently, few genetic variants of SARS-CoV-2 with substitution mutations in ‘RBD’ have emerged in different 

geographical regions, and have subsequently spread across the borders. The UK or B.1.1.7 (501Tyr mono-

substitution) and the South African or B.1.351 (20His/501Tyr dual-substitutions) strains have been suggested with 

much faster transmission and increased risk of death. Most recently, the Brazil or P.1 variant with three substitutions 

in ‘RBD’ and 17 other unique mutations has emerged in Brazil [49]. 

7. Conclusion 

Humans lack natural immunity against zoonotic SL-CoV, notably the novel SARS-CoV-2 which has faster 

‘human-to-human’ transmission rates and higher pathogenicity than SARS-CoV-1 and MERS-CoV Nonetheless, 

previous experiences with SARS-CoV-1 and MERS-CoV outbreaks have helped understanding the SARS-CoV-2 

pathobiology to some extent. Over the course of cross-species infection and adaptation, some acquired mutations may 

lead to evolution of even more aggressive vial strains. Although the clinical manifestations of COVID-19 are well 

understood now, the mechanism(s) underlying its high infection rate and pathogenicity is hitherto not clearly 

established. In view of this, comparative genome and protein sequence analysis of SARS-CoV-2 has revealed several 

novel mutations, notably in the spike RBD, including generation of a furin-like site. This strongly suggests SARS-

CoV-2 enhanced cell attachment and facilitated entry, its high infectivity and severe pathogenesis in humans. The 

observed mutations within the non-structural proteins may be crucial for the enhanced replication of the viral genome. 

In addition, mutations within the accessory proteins could have significant roles in evading or modulating host innate 

immune system and sustaining virus replication. Therefore, novel mutations acquired by SARS-CoV-2 during 

‘human-adaptation’ and ‘human-to-human’ spread provide insights into its transmission dynamics which together with 

clinical and epidemiological data can predict disease prognosis. Moreover, the consequence of these mutations on 

virus infectivity and tissue-tropism remain to be studied in animal models. Since SARS-CoV-2 is transmitted even 

during the asymptomatic phase of COVID-19, it would be interesting to study its replication in early phase, and how 

the innate- and adaptive-immune systems respond to its life cycle. Nonetheless, further rigorous genetic and molecular 

studies would enhance our knowledge on the subject towards updating treatment and preventive strategies, especially 

for the recently emerged variants. 
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