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Abstract 

Pulmonary Hypertension (PH) is a multifactorial and lethal disease, characterised by elevated pulmonary arterial pressure 

and progressive right heart failure. PH pathobiology rests on four pillars: vascular remodelling, vasoconstriction, 

inflammation and thrombosis. While vascular and inflammatory cells have been the focus of PH research over the past 

decades, platelets have received relatively less attention, despite their associations with key pathophysiological processes 

of the disease. Platelets contain a wide range of vasoactive, inflammatory and pro-thrombotic mediators, likely to 

promote PH development and progression. There is currently no cure for PH, and platelet-associated pathways may help 

identify new therapeutic strategies. This review summarises available evidence on the role of platelets in different forms 

of PH, and comments on the current state of platelet-targeting therapies. It also describes the latest advances in the in 

vitro technologies that enable exploration of platelet function under dynamic and physiologically relevant conditions. 
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1. Introduction 

Pulmonary Hypertension (PH) is a severe lung disease, characterised by elevated pulmonary arterial pressure 

(PAP), ultimately leading to right heart failure and death. The rise in lung blood pressure results from increased 

pulmonary vascular resistance (PVR) due to vasoconstriction, vascular remodelling [1] and thromboembolism [2]. PH 

is a recognised comorbidity of a variety of conditions, including left-sided heart and lung diseases [3]. 

The current classification, based on disease aetiology, divides PH into five groups: 1) Pulmonary Arterial 

Hypertension (PAH), 2) PH due to Left Heart Disease (LHD), 3) PH due to lung diseases and/or hypoxia, 4) Chronic 

Thromboembolic PH (CTEPH), and 5) PH with unclear multifactorial mechanisms (Figure 1). 

While usually considered a rare disease, PH is becoming a common health issue across the world. PAH has an 

incidence of 2-10 cases per million adults per year in developed countries [4], with idiopathic PAH (IPAH) being the 

predominant subtype (50-60% of PAH cases) as per registries from Europe and the USA [4-6]. PH related to LHD or 

chronic hypoxia is more widespread than PAH [7], with 50.2% of patients with chronic obstructive pulmonary disease 

(COPD) experiencing mild PH [8]. Additionally, many studies have reported that at least 50% of patients with heart 

failure are diagnosed with PH [9, 10], with increasing reports of cases amongst African cohorts [11]. CTEPH 

prevalence and incidence remain hard to determine, due to the high number of patients undergoing pulmonary 

thromboendarterectomy (PTE), which is largely curative, and to the similarities between acute pulmonary embolism 

(PE) and pre-existing CTEPH symptoms [12]. Nevertheless, the crude annual CTEPH incidence has been estimated to 

be around 5 and 104 cases per 100 000 population per year in Europe and the USA, respectively [13], with 

approximately 3% of acute PE survivors developing the disease [14].  
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Figure 1. Latest classification of pulmonary hypertension (HIV: human immunodeficiency virus; LHD: Left-heart disease [15] 

Considering the multifactorial nature of PH, it is often challenging to identify the disease mechanisms and to 

design appropriate therapies [7]. However, regardless of the underlying conditions, the vast majority of PH patients 

display abnormalities in their pulmonary vascular bed, manifested by remodelling of all or some of the vascular layers 

(adventitia, media and intima) and a decreased luminal cross-sectional area [16, 17]. 

PH research has significantly evolved over the last century, since the first autopsy report of IPAH by Ernst von 

Romberg in 1891 [18]. The role of endothelial (ECs) and smooth muscle cells (SMCs) has been the main focus of 

research in the past decades. Medial hypertrophy is a common feature to all functional classes of PH, with major 

phenotypic [19], genetic [20-22] and epigenetic [23] alterations noted in pulmonary vascular smooth muscle cells 

(PVSMCs). ECs are also widely recognised as essential contributors to vascular remodelling and vasoconstriction, 

through dysregulated production of vasoactive mediators [24-26] and a switch towards a hyper-proliferative, anti-

apoptotic phenotype [27, 28]. Endothelial damage accompanied by loss of barrier function and followed by increased 

pro-thrombotic, pro-inflammatory, pro-proliferative and pro-angiogenic activation represent key events in initiation 

and progression of PH [29]. Inflammation plays an important role in disease development, although PH is not 

considered as an inflammatory disease per se. Indeed, PAH patients display elevated serum levels of cytokines and 

chemokines [30], and show increased perivascular immune cells infiltration in plexiform lesions in the lung [31]. 

While vascular and immune cells have been studied in great detail, platelets have received relatively less attention, 

despite their involvement in the main pathophysiological processes leading to PH. Platelets, through their ability to 

aggregate and to produce, store and release a wide range of growth factors, vasoactive mediators and cytokines [32], 

are likely to augment vascular remodelling and vasoconstriction, in addition to the formation of pulmonary thrombotic 

lesions observed in severe forms of PH [33].   

Although there are clear associations between platelet dysfunction, thrombogenesis and vascular remodelling in 

PH, the nature of their interdependent relationships is not fully understood. This review presents the current evidence 

for the role of platelets in PH pathobiology, first by looking at the upstream events leading to platelet activation, and 

then focusing on the interactions of platelets with the pulmonary vasculature. Current platelet-targeting therapies and 

pre-clinical models of platelet function are discussed. The latest advances in the in vitro technologies enabling 

observations of platelet behaviour under dynamic, physiologically relevant conditions, are also reviewed.  

PH is a serious and currently incurable health condition [34] and more effective therapeutic strategies need to be 

developed. Targeting platelets and thrombotic processes could help manage the disease groups most affected by 

platelet dysfunction, and improve patients’ quality of life.  
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2. Pulmonary Hypertension 

2.1. Definitions and Symptoms 

PH is a haemodynamic and pathological condition defined by an increase in mean pulmonary arterial pressure 

(mPAP) to or above 25mmHg at rest, as measured by right heart catheterization [35].  

Different haemodynamic definitions of PH are also available, based on combinations of PAP, pulmonary artery 

wedge pressure, cardiac output, diastolic pressure gradient and PVR, and are recommended to be used when 

distinction between isolated post-capillary hypertension and combined post- and pre-capillary hypertension is 

required(4). Pre-capillary PH usually encompasses PAH, CTEPH, PH due to lung disease, and idiopathic PH, while 

post-capillary PH includes PH due to LHD [36].  

Common symptoms of PH are non-specific, usually related to progressive right ventricular dysfunction, and 

initially manifest upon exertion [7]. They include dyspnea, fatigue, chest pain, syncope and palpitations, which can 

also be observed at rest in severe cases [8]. Progressive lower extremity oedema, liver failure, and ascites may also 

develop due to chronically elevated right atrial (RA) pressure [8]. 

Because of the complex aetiology of PH, and the variety of associated conditions, diagnosis requires careful 

planning and a multi-disciplinary approach. Right heart catheterization is considered the gold standard for PH 

diagnosis [36], but its invasiveness makes it unsuitable for routine use. Alternatives include electrocardiogram, chest 

radiography, echocardiography, pulmonary function test, computed tomography, and cardiac magnetic resonance 

imaging [36].  

It is worth noting that elevated mPAP may not always have pathological cardiopulmonary causes, and can be 

observed in pregnancy, anaemia or sepsis. In such cases, the pulmonary bed remains unaffected, and PH resolves upon 

normalisation of the cardiac output [7].  

PH prognosis remains poor, especially for PAH, despite the available therapies. A mortality rate of more than 10% 

has been estimated in high-risk PAH patients one year after diagnosis [36], although recent evidence derived from the 

SERAPHIN and GRIPHON studies suggests that patients experiencing a morbidity event (eg worsening of symptoms) 

within the first 3 months of their enrolment had a mortality rate of 30-40% [37].   

2.2. Pathobiology of Pulmonary Hypertension  

The complexity of PH can be attributed to a wide range of cellular and molecular alterations underlying its 

pathogenesis. Early hypotheses for the origin of vascular lesions included congenital thinning of the pulmonary artery 

(PA) media, and abnormal endothelial phenotypic modifications [38]. In 1958, Heath and Edwards published an 

extensive histological study of PH lungs, which provided the first detailed description of vascular remodelling [16]. It 

was in this study that increased PAP and PVR were linked to the formation of plexiform and dilation lesions, observed 

in advanced forms of the disease [16]. Another histological report by Yi and colleagues [17] described the obstructive 

intimal lesions in PH as ‘intermediate forms between plexiform and thrombotic lesions’, containing cells displaying a 

predominant myofibroblastic phenotype and different stages of differentiation.  

Endothelial dysfunction is a hallmark of PH, characterised by reduced production of vasorelaxants, such as 

prostacyclin (PGI2) [24] and nitric oxide (NO) [25], and increased production of vasoconstrictors, such as endothelin-1 

(ET-1) [23]. Additionally, increased release of transforming growth factors (TGFs) [39] and vascular endothelial 

growth factor (VEGF) [40] promote medial hypertrophy and intimal hyperplasia (Figure 2). 

Phenotypic switches are commonly observed in both pulmonary artery endothelial cells (PAECs) and pulmonary 

artery smooth muscle cells (PASMCs). PH PAECs typically demonstrate a hyper-proliferative, pro-angiogenic and 

anti-apoptotic phenotype [27, 28], with evidence of endothelial-to-mesenchymal transition (EMT) [41] and 

compromised barrier function [42]. PH PASMCs show transition from contractile to synthetic phenotype, which 

promotes their hyperplastic growth [19]. SMCs arising from EMT [43], circulating fibrocytes or mesenchymal 

progenitor cells are thought to play a role in hypoxia-induced vascular remodelling [44].  Endothelial progenitor cells 

(EPCs) may also contribute to disease development [45], though some evidence suggests a protective role [46, 47]. 

In addition to vascular stresses induced by hypoxia, inflammation, drugs and toxins, genetic changes have also 

been shown to contribute to PH pathobiology, notably mutations in the TGF-β receptors family. Indeed, bone 

morphogenic protein receptor II (BMPRII) mutations are found in approximately 53-86% of hereditary PAH (HPAH), 

and 14-35% of IPAH patients [48], while other forms of PAH are characterised by reduced BMPRII function due to 

decreased expression [49] or increased degradation of the receptor expression [50]. Less commonly, mutations in the 

activin-like kinase-type 1 (ALK1), endoglin (ENG) and SMAD genes have been implicated in increased susceptibility 

to PAH [48]. Interestingly, only 20% of the BMPR2 mutations carriers develop the disease, suggesting that a “second 

hit” created by hypoxia, inflammation, drugs or toxins is required for disease progression [51, 52] (Figure 2).  
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No specific genetic mutations have been linked to the other forms of PH [53, 54], but there is evidence of a 

decreased expression of BMPR-1A, a transmembrane protein required for BMPRII signalling, in the lungs of CTEPH 

and other PH patients [55]. 

Figure 2. Abnormal vascular remodelling in pulmonary arterial hypertension 

Genetic mutations, hypoxia, inflammation, drugs/toxins can cause endothelial dysfunction, leading to imbalances 

in the production and release of vasoactive mediators, mainly nitric oxide (NO), prostacyclin (PGI2), serotonin (5-HT) 

and endothelin-1 (ET-1), growth factors (transforming growth factors (TGFs), vascular endothelial growth factor 

(VEGF)), and inflammatory cytokines. These all contribute to vasoconstriction, adventitial and medial thickening, as 

well as neointima formation, by promoting endothelial cells hypertrophy and hyperplasia, as well as smooth muscle 

cells and fibroblasts proliferation and migration. Such vascular changes ultimately cause an increase in pulmonary 

vascular resistance and pulmonary arterial pressure (Figure adapted from Schermuly et al, 2013 and Thompson and 

Lawrie, 2017) [1, 56]. 

2.3. Pulmonary Hypertension and Thrombosis  

The potential role of thrombosis in the pathobiology of PH emerged in the 1970s, when Inglesby and colleagues 

first reported reduced plasma fibrinolysis in familial PH [57].  Many other studies have since found thrombotic lesions 

in the pulmonary vasculature of PAH patients [33, 58]. In situ thrombosis is now widely recognised as a common 

pathological feature of PAH, and large central thrombi can also develop in severe IPAH [59].  

CTEPH results from an incomplete resolution of pulmonary thromboemboli, which leads to the formation of 

organised, fibrotic occlusions within the vasculature, limiting blood flow and increasing PAP [12]. Histological 

examination of PTE specimens consistently showed intimal thickening with collagen deposition, inflammatory cells 

infiltration, atherosclerosis and calcification [60]. In contrast with PAH, which affects <300 m diameter vessels, 

CTEPH mostly involves the major pulmonary vessels [61] and can cause very severe PH if left untreated [62].   

However, viewing CTEPH solely as a thrombotic obliteration of the central PA is too simplistic. Indeed, most of 

patients with acute pulmonary embolism do not develop CTEPH [14], which can persist even after PTE [63], 

suggesting that additional factors are required to induce the disease. 

Many controversies remain around the pathobiology of CTEPH. Although less than 50% of PTE patients were 

found to have coagulation or haematologic abnormalities in a retrospective study [60], the European CTEPH Registry 

reported that previous PE and deep venous thrombosis were present in 74.8% and 56.1% of CTEPH patients, 

respectively [64]. Furthermore, risk factors for recurrent venous thromboembolism are observed in CTEPH, including 

lupus anticoagulant and antiphospholipid antibodies [65], elevated plasma factor VIII and von Willebrand Factor 

(VWF):Antigen levels [66].  

Ineffective fibrinolysis may also play a key role in CTEPH, as suggested by the presence of lysis-resistant fibrin 

variants in CTEPH patients [67, 68]. Additionally, CTEPH is often associated with chronic infection or inflammation 

[69], and elevated levels of inflammatory cytokines (eg Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 

(MCP-1)) have been reported in patients [70]. Splenectomy has also been associated with higher CTEPH incidence 
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and worse prognosis [69]. These observations suggest that inflammation, abnormal platelet function and fibrinolysis 

create a pro-thrombotic environment, promoting vascular occlusion.  

The hypothesis that increased PAP and PVR in CTEPH are caused not only by arterial obstruction, but also by 

vascular remodelling and vasoconstriction, is supported by the absence of correlation between the increased PAP and 

the degree of vascular bed obstruction [71]. Indeed, CTEPH patients have much higher PVR than acute PE patients 

with similar vascular bed obstruction levels [63].  This suggests that PE may be an initiating event, but is not sufficient 

to cause CTEPH, which actually results from the secondary pulmonary vasculopathy that follows thromboembolism.  

Histological studies of CTEPH lungs revealed vascular changes similar to those seen in other forms of PH, 

including the formation of plexiform lesions [17, 71]. Interestingly, vascular remodelling was also observed in distal 

PAs which were not directly affected by thrombi [17], but were exposed to high PAP and shear stress due to chronic 

obstruction of the main arteries. A “dual vascular bed compartment” theory for CTEPH was first suggested by Moser 

and colleagues [72], whereby patients display an obstructed compartment subjected to chronic ischemia, and an 

unobstructed one subjected to increased blood flow. Both regions display vasculopathy, but induced by different 

causes. 

CTEPH therefore appears as a multifaceted disease, in which major vessel thrombosis and remodelling is 

accompanied by pulmonary arteriopathy, characterised by endothelial dysfunction and excessive ECs and SMCs 

proliferation [72]. EMT [73] and progenitor cells [74] have also been suggested to participate in CTEPH progression.  

Whilst the predominant view is that PE, followed by progressive vascular remodelling leads to CTEPH, it has also 

been argued that primary pulmonary arteriopathy can induce secondary in situ thrombosis and vascular occlusion [75]. 

Similarities between CTEPH and other forms of PH, such as pulmonary thrombosis and plexiform lesion formation 

[33, 58], are indicators of a complex aetiology of the disease.  

3. Platelet Dysfunction in Pulmonary Hypertension 

The role of platelets and thrombosis in PH remains controversial. Platelet activation and aggregation can either be 

regarded as an active regulator of vascular remodelling, or it can be seen as a passive bystander, secondary to 

endothelial dysfunction and pulmonary arteriopathy. This section discusses the physiological role of platelets and 

describes the mechanisms leading to platelet aggregation and dysfunction in PH.  

3.1. The Physiological Role of Platelets in the Human Body  

 Discovered by Giuilio Bizzozero in 1882 [76], platelets are small, anucleate cell fragments (2-3 μm diameter) derived 

from megakaryocytes [77] that circulate in the bloodstream and have an essential role in the regulation of haemostasis 

and vascular integrity. Platelet dysfunction has been implicated in a wide range of diseases, including cardiovascular 

diseases (CVDs) and cancer [78].  

Thousands of platelets can be produced by a single megakaryocyte, and around 1011 platelets are made every day in 

a healthy adult [79], with old platelets being destroyed in the spleen and liver by Kupffer cells [80]. Platelets express a 

variety of surface receptors, regulating their interactions with the endothelium and other platelets, and the release of 

their granule contents [78]. 

Under normal physiological conditions, interaction of platelets with vascular cells and soluble coagulation 

proteases (called coagulation factors) maintains the haemostatic balance, preventing thrombosis and haemorrhage 

[81]. Coagulation, initially described as a cascade of events initiated by two distinct pathways, known as the 

“extrinsic” and “intrinsic” pathways [81], is now viewed as a three-phase model of overlapping initiation, 

amplification and propagation of the response [82]. Coagulation ultimately leads to the formation of a fibrin mesh, 

which stabilises the pre-formed platelet plug [82]. Detailed mechanisms of this process have been reviewed elsewhere 

[83].  

The tissue factor (TF)/factor VIIa complex is essential in initiating haemostasis [82]. TF is highly expressed in the 

vascular adventitia, but less so in ECs and SMCs in healthy blood vessels [84]. However, changes in blood flow [85], 

hypoxia [86], growth factors (including platelet-derived growth factors (PDGF)) [87] and inflammation [88] can affect 

endothelial TF expression.  An overview of the coagulation cascade, initiated by endothelial TF, is provided in Figure 

3. TF can also be found in circulation, in association with platelet-derived microparticles (PMPs) [89].  

Upon tissue injury and sub-endothelial collagen exposure, platelets are captured by VWF, which binds the platelet 

GPIb/V/IX receptor complex [90]. This leads to platelet activation and shape changes, followed by GPIIb/IIIa surface 

expression, which mediates inter-platelet interactions via VWF or fibrinogen binding [91]. VWF usually substitutes 

for fibrinogen under high shear stress (HSS) conditions [92]. Activated platelets then recruit additional ones through 

the release of agonists, such as adenosine 5′-diphosphate (ADP), serotonin or thromboxane A-2 (TXA-2) [32], 

consolidating the formation of the platelet plug. Platelets may adhere to the endothelium in the absence of evident 
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endothelial injury, a process which will be described later in this review.  

Platelets also act as an important link between primary and secondary haemostasis, which involves stabilisation of 

the pre-formed platelet plug by insoluble fibrin, the end-product of the coagulation cascade [81]. Platelets contribute to 

this process by exposing a negatively charged phospholipid surface, required for the catalytic activity of coagulation 

factor complexes [93]. 

Many pro-inflammatory, pro-thrombotic, and pro-angiogenic mediators are stored in platelets’ - and dense () 

storage granules, and are released upon platelet activation [32]. P-selectin, TGF-1, VWF, PDGF, tumour necrosis 

factor- (TNF-), interleukins, coagulation Factor V and fibrinogen are found in platelets’ -granules [94]. Dense 

granules contain many vasoactive molecules, including serotonin (5-HT), ADP, adenosine 5′-triphosphate (ATP), 

calcium and catecholamines [95]. All these molecules are known to induce endothelial inflammation, SMC migration 

and proliferation, platelet aggregation and leukocyte migration [1], suggesting a potential role of platelets in PH 

pathogenesis. 

The role of platelets therefore extends beyond thrombosis and haemostasis, with strong evidence of their 

involvement in vascular inflammation, atherosclerosis [96], arthritis [97] and PH associated with inflammatory and 

connective tissue diseases, including systemic sclerosis [98] and systemic lupus erythematosus [99].  

 

Figure 3. Overview of the coagulation cascade initiated by endothelial tissue factor 

When activated, the endothelium expresses increases expression of tissue factor (TF), which binds and activates 

factor VII (FVII), leading to factor X (FX) activation. FXa then cleaves platelet- and endothelium-bound pro-thrombin 

(FII) into thrombin (FIIa), which in turn cleaves fibrinogen into fibrin. Platelets adhere to the activated endothelium by 

binding to von Willebrand factor (VWF) through the GPIb receptor, and to intercellular adhesion molecule-1 (ICAM-

1) via GPIIb/IIIa, an interaction mediated by extracellular matrix proteins such as fibrinogen. Fibrin forms a mesh and 

stabilises the pre-formed platelet plug. The coagulation cascade is tightly regulated by endothelium-derived factors. 

Secreted tissue plasminogen activator (tPA) promotes the activation of plasminogen into plasmin, an inhibitor of fibrin 

formation. This process is inhibited by plasminogen activator inhibitor-1 (PAI-1), which is increased in pulmonary 

arterial hypertension. Additionally, thrombomodulin (TM) binds to thrombin, converting it into an anti-coagulant 

catalysing the activation of protein C (APC), which in turn inhibits thrombin production. 

3.2. Platelet-vessel Wall Interactions  

The endothelium maintains vascular integrity and regulates haemostasis, preventing excessive coagulation and 

thrombus formation. An intact, healthy endothelium displays an anti-thrombotic surface, mainly through the 

expression of thrombomodulin (TM), which binds thrombin and prevents fibrinogen cleavage [100] (Figure 3). ECs 

can also produce tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1), therefore 

potentiating or inhibiting fibrinolysis [101]. Additionally, the endothelium is a major source of NO [102] and PGI2 

[103], which are key inhibitors of platelet aggregation and activation[104], in addition to their vasodilatory and anti-

proliferative effects [102, 103]. 
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However, inflammation, chronic hypoxia or shear stress can lead to endothelial activation and a switch towards a 

pro-thrombotic phenotype [86, 105, 106], resulting in imbalanced production of haemostatic and vasoactive mediators.  

PH patients typically display a hypercoagulable state, characterised by increased thrombin activity [107], increased 

plasma VWF [108] and PAI-1 [107] levels and reduced TM levels [109]. Aberrant TF expression has also been 

observed in vessels and plexiform lesions of PAH lungs[110], with higher levels of VWF associated with worse 

disease outcomes [108, 111]. Furthermore, impaired endothelial function leads to reduced NO [25] and PGI2 [24] 

production, which not only promotes vasoconstriction [112], but also platelet activation and aggregation [113]. 

Platelets can directly bind to the vascular endothelium, in addition to their interactions with the sub-endothelial 

matrix and other platelets. This direct interaction is particularly important during inflammation. Under physiological 

conditions, platelets roll on the vascular wall, and their binding is enhanced upon endothelial activation, leading to 

firm adhesion [114]. Platelet-endothelial interactions are mediated by integrins and selectins, and comprise tethering, 

rolling and adhesion, bearing similarities to the leukocyte adhesion process [115] (Figure 4). P-selectin is essential for 

platelet rolling, particularly on the inflamed endothelium [114]. While P-selectin is expressed both by platelets [94] 

and ECs [116], only endothelial P-selectin is involved in platelet-endothelial interactions under stimulated conditions 

[114]. Like P-selectin, endothelial VWF is also stored in Weibel-Palade bodies and is released upon stimulation [117], 

binding to the GPIb subunit of the GPIb/V/IX complex [118]. VWF is key for promoting platelet adhesion under 

high shear stress, enabling platelet-VWF interactions to sustain shear rates above 500s-1 [105, 119]. Particularly, ultra-

large VWF multimers, released by activated ECs [120], have the ability to form very strong bonds with platelet GPIb 

[121]. However, due to its fast dissociation rate [122], GPIb-VWF binding is considered to be involved in initial and 

reversible platelet adhesion, rather than irreversible binding to the endothelium [123]. Interestingly, long-lasting 

GPIb-VWF interactions appear to occur under abnormally high shear rates, above 10,000s-1 [124].   

P-selectin glycoprotein ligand 1 (PSGL-1) [125] and GPIb [126] are main P-selectin ligands on platelets. ECs can 

also express PSGL-1, which binds platelets’ P-selectin after endothelial TNF- stimulation [127]. The exact roles of 

endothelial and platelet PSGL-1 and P-selectin under physiological and pathological conditions remain to be explored. 

In contrast with short-lived, selectin-mediated interactions, integrins are involved in stable platelet adhesion 

(Figure 4). Stable adhesions are initiated by GPIIb/IIIa on platelets, and ανβ3, Intercellular Adhesion Molecule-1 

(ICAM-1) and VWF on ECs [128, 129]. Fibrinogen and vitronectin can bind to ανβ3 and ICAM-1, therefore acting as 

a bridge between platelets and ECs [130]. ICAM-1[131] and ανβ3 [132] expression and VWF production levels [120] 

are low under resting conditions, but can increase significantly upon endothelial activation, promoting platelet 

adhesion. Elevated ICAM-1 levels have been found in PAH [133] and CTEPH [134] patients, suggesting an increased 

risk for platelet-mediated pathological effects. 

Of relevance to PH, an impairment of endothelial barrier function due to BMPRII mutations [135], hypoxia or 

other PH factors, may lead to sub-endothelial collagen and laminin exposure, promoting platelet adhesion and 

aggregation.  

 

Figure 4. Platelet rolling and adhesion to the vascular endothelium 

Platelets can directly bind to the vascular endothelium through tethering, rolling and adhesion, enhanced upon 

endothelial activation. Under high shear stress conditions, immobilised von Willebrand Factor (VWF) captures 

platelets and initiates their reversible binding via Glycoprotein Ib (GPIb). P-selectin also binds to GPIb, and 

potentially to P-selectin glycoprotein ligand 1 (PSGL-1), promoting platelet rolling. Stable adhesion of platelets is 

mediated by platelet and endothelial integrins, notably ανβ3 and Intercellular Adhesion Molecule-1 (ICAM-1) on 

endothelial cells, and Glycoprotein IIb/IIIa (GPIIb/IIIa) on platelets. Extracellular matrix proteins, such as fibrinogen 

or vitronectin, act as a bridge between platelets and the endothelium by binding their respective integrins. VWF is also 

required for stable platelet adhesion, especially under high shear stress.  
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3.3. Platelet Abnormalities in Pulmonary Hypertension 

Platelet dysfunctions are commonly found in PH, and can range from metabolic alterations to phenotypic changes 

and defective aggregation.   

Platelet metabolic abnormalities, such as increased mitochondrial reserve capacity, have been correlated with 

mPAP, PVR and RV stroke work index in PAH patients [136]. Thrombocytopenia has also been observed in patients 

with severe forms of PAH [137], likely due to microangiopathic haemolysis, a process in which flow through fibrin 

clots and plexiform lesions results in platelets shearing [138]. In contrast, increased levels of the thrombopoiesis-

stimulating hormone thrombopoietin have been reported in pulmonary vessels of PH patients [139]. Additionally, 

increased mean platelet volume (MPV), indicative of platelet activation [140], was found in IPAH and in conjunction 

with decreased platelet count in CTPEH patients, suggesting increased platelet turnover [141]. Platelet production and 

destruction therefore seem to be altered in PH. 

Platelet activation is higher in PH patients compared with healthy individuals. In CTEPH patients, platelets show 

hyperresponsiveness to thrombin stimulation, as well as increased activation of the small GTPase RalA, which is 

involved in degranulation [142]. Interestingly, platelet RhoA but not RalA was found to be increased in PAH patients 

[142], likely to reflect different pathophysiology of both diseases. RhoA plays a role in cytoskeletal reorganisation 

[143] and platelet aggregation [144].  

Greater platelet agonist-induced aggregation was also found in CTEPH [141] and PAH patients [145]. Tyrosine 

phosphorylation, used as a marker of in vivo platelet activation, is increased by 79% in PAH patients, compared with 

controls [146]. Genome-wide RNA expression analyses of IPAH lung tissues showed that gene expression of proteins 

involved in coagulation, platelet activation and degranulation, including platelet factor 4 (PF4), P2Y purinoreceptor 1 

(P2RY1), and coagulation factor II (thrombin) receptor-like 3 (F2RL3) was elevated, suggesting abnormal endogenous 

activation in platelets [147]. Additionally, platelets from PAH patients release soluble CD40L (sCD40L), a key pro-

inflammatory molecule, at a higher level in response to thrombin receptor-activating peptide (TRAP), compared with 

controls [148]. 

Platelets can produce NO via eNOS and iNOS expression, though their role in this process is debatable [149, 150]. 

Reduced expression of platelet eNOS is reduced in PAH patients [151] can potentially lower their activation threshold. 

NO regulates platelets’ intracellular Ca2+ (Ca2+
i), which controls platelet activation and aggregation [152]. Indeed, 

abnormalities in Ca2+
I homeostasis have been associated with reduced NO levels both in experimental models of 

arterial hypertension [153] and hypertensive human patients [154], and elevated [Ca2+
I] was  found to enhance 

platelets’ sensitivity to agonist stimulation [153]. These observations may, at least in part, may explain the correlation 

between platelet hyper-aggregability and reduced NO levels observed in PH. 

3.4. Shear Stress and Thrombotic Responses 

Platelet aggregation is largely influenced by shear stress and changes in blood flow. In particular, shear 

acceleration and deceleration, also known as shear micro-gradients, create a pro-thrombotic environment [105, 155]. 

As previously mentioned, ECs orchestrate vascular responses to haemodynamic stimuli, through their ability to sense 

wall shear stress (WSS) via specific cell-surface mechanosensors [156]. While laminar, pulsatile flow with 

physiological WSS (mean 10-15 dyne/cm2, peak<100 dyne/cm2) promotes endothelial quiescence, disturbed flow and 

low WSS (<4 dyne/cm2) have been shown to induce endothelial dysfunction, including high EC turnover, random 

actin alignment [157], increased permeability [157], increased expression of pro-inflammatory markers, such as MCP-

1 [158] and ICAM-1 [157, 158], and increased secretion of VWF [105].  

Shear stress also regulates VWF function, by causing important conformational changes in its A1, A2 and A3 

domains and regulating its interactions with platelets [159]. Especially, high shear stress exposes the A1 domain, 

allowing it to form a stable complex with platelet GPIb [160].  

In vivo and in vitro studies, using stenosed microfluidic chambers, have previously shown that high WSS at the 

stenosis apex promotes reversible GPIb-mediated platelet recruitment, while low WSS downstream the stenotic region 

led to stable platelet aggregation via GPIIb/IIIa activation and in a VWF-dependent manner [105, 155]. Elongational 

flow was found to activate soluble VWF, high WSS to promote TXA-2 and ADP release from platelets, and 

decreasing WSS to induce endothelial VWF secretion and accumulation at the stenosis outlets [105]. Interestingly, 

platelet aggregation did not occur in straight microfluidic channels, even at very high shear rates (up to 20000s-1) [105, 

155], indicating a key role for stenotic geometries in thrombogenesis. This is of relevance in the context of vascular 

remodelling in PH, as luminal obstruction could create flow perturbations, therefore promoting in situ platelet 

aggregation. 
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4. The Role of Platelets in Pulmonary Hypertension Pathogenesis  

Platelets, through their aggregation into thrombi and the production of a variety of vasoactive mediators, growth 

factors and inflammatory cytokines, contribute to vascular remodelling, vasoconstriction and the formation of 

occlusive thrombotic vascular lesions. This section will explore how platelets are related to each of these events. 

4.1. Vascular Remodelling 

Disordered angiogenesis is found in severe PH, usually in the form of angioproliferative, plexiform lesions [161]. 

A plethora of pro- and anti-angiogenic factors, including VEGF, PDGF, PF4 and angiostatin are released by platelets 

[94] (Figure 5). Beside angiogenesis, VEGF controls many fundamental functions of vascular cells, from apoptosis to 

NO production [162]. However, the role of VEGF in PH remains controversial. While some studies found that VEGF 

overexpression in MCT-[163] and chronic hypoxia-[164] induced PH rats led to haemodynamic improvements, others 

showed that inhibition of VEGF signalling attenuates PH [165]. Furthermore, despite the evidence for increased 

VEGF receptor-2 (VEGFR-2) expression in plexiform lesions of PH patients [161], VEGFR blockade causes severe 

PH when combined with chronic hypoxia in rats [166]. In humans, one study found increased platelet VEGF content 

in PH patients [167], but other studies observed no differences in plasma [168] and platelet [169] VEGF levels 

between IPAH and controls. VEGF administration after ECs accumulation in the pulmonary vasculature of chronic 

hypoxia rats had a slightly negative impact on PAP [166], suggesting that VEGF may have a dual role in PH, 

providing early protection before contributing to vascular remodelling. VEGF has also been shown to promote TF 

expression in ECs [170].  

PDGF acts as a mitogen [171] and chemoattractant[172] for PASMCs, and PDGF receptor (PDGFR) expression is 

increased in PAH lungs [173, 174]. Consistently, inhibition of PDGFRs reverses experimental PH [175].  

Angiostatin is another platelet-derived factor released upon aggregation [176] (Figure 5), which promotes EC 

apoptosis by antagonising VEGF [177]. Indeed, higher levels of platelet angiostatin in IPAH patients have been 

associated with increased EC apoptosis [169]. Additionally, adenoviral overexpression of angiostatin was shown to 

aggravate PAH in chronically hypoxic mice [178].  

Platelet activating factor (PAF) has been shown to induce IL-6/8 [179] and VEGF [180] expression in pulmonary 

fibroblasts and vascular SMCs, and has been associated with increased disease severity in primary pulmonary 

hypertension of the newborn (PPHN) [181] and chronic hypoxia-induced PH [182]. In foetal lambs exposed to chronic 

high-altitude in utero, increased PAF levels and PAF-induced PASMCs proliferation were observed [183], while PAF-

receptor antagonists attenuated hypoxia-induced PH and vascular remodelling in rat models [182].  

Serotonin produced by the central nervous system is initially taken up by platelets [184] to prevent its 

vasoconstrictive [185],  pro-proliferative [20] and pro-thrombotic [186] effects. While some studies found increased 

circulating serotonin levels in PH patients [187, 188], others did not [189, 190]. Higher serotonin release from 

platelets was also observed in PH patients compared to controls [187].  Secreted upon platelet activation, serotonin has 

a powerful vasoconstricting effect (Figure 5) and acts on many vascular cells through the serotonin transporter (SERT) 

and three serotonin receptors: 5-HT-1BR, 5-HT-2AR and 5-HT-2BR. Elevated levels of all these receptors have been 

found in PH lungs[191, 192], although only the expression of SERT was increased in cultured patient-derived 

PASMCs, and accounted for the serotonin-induced PASMCs growth response [192].  

The importance of serotonin in vascular remodelling was first suggested in the 1960s, when an increased number 

of female PAH cases was associated with the intake of the anorectic drug Aminorex [193], known to affect serotonin 

transport in the lungs [194]. Increased SERT activity was shown to promote Ca2+-dependent, Rho-associated protein 

kinase (ROCK)-mediated PASMC proliferation in vitro [195], as well as contraction through voltage-gated Kv 

channels inhibition [196]. Additionally, SERT gene polymorphism was found in 65% of PH patients, compared to 

27% of controls [20].  

Serotonin may also be involved in EPC differentiation [191], fibroblasts proliferation [197] and metabolic 

alterations in PAH [198]. Furthermore, it could promote inflammatory cells transmigration by increasing endothelial 

permeability [199], and platelet aggregation mediated by the 5-HT-2AR [200].  

Angiopoietin-1, also released from platelets upon thrombin stimulation [201], has been proposed to stimulate 

endothelial serotonin production by activating TIE-2 receptors, further promoting PASMC proliferation [202].  

4.2. Inflammation 

Platelets release many mediators increasing endothelial dysfunction, inflammation, and leukocyte recruitment, 

which promote vascular remodelling. There is a close link between coagulation and vascular inflammation, and 

CTEPH patients typically display increased levels of inflammation markers, including C-Reactive Protein (CRP) [203] 

and TNF- [204]. 
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CD40L is an important pro-inflammatory molecule, expressed on the surface of activated platelets, and released as 

sCD40L [205] (Figure 5). Elevated levels of sCD40L have been found in PAH patients, alongside increased MCP-1 

and IL-8 [148], and sCD40L has been shown to induce EC [206] and fibroblast [207] chemokine production, 

promoting leukocytes infiltration. Interactions between sCD40L and its endothelial receptor CD40 are known to 

induce vascular remodelling in other diseases, including atherosclerosiss [208], and could therefore participate in the 

development of PAH.  

The pro-angiogenic chemokine stromal-derived factor-1a (SDF-1a) (also known as CXCL12) has been shown to 

induce monocyte chemotaxis [209] (Figure 5), and promote vascular remodelling through its receptors CXCR4 [210] 

and CXCR7 [211], notably by recruiting bone marrow-derived progenitor cells [210]. Increased CXCR7 [211, 212] 

and SDF-1a [212] levels were found both in PH patients’ and mice models’ lungs, and have been associated with 

poorer PAH survival [213]. 

Lymphotoxin-like inducible protein that competes with glycoprotein D for Herpesvirus entry mediator on T 

lymphocytes (LIGHT) is a platelet-derived TNF- superfamily member [214], known to promote EC- and monocytes-

mediated vascular inflammation [215] (Figure 5). Elevated serum LIGHT levels have been found in the femoral 

arteries of IPAH, CTEPH and secondary PAH patients, and correlated with increased mortality [216]. LIGHT 

receptors were also detected on PASMCs, PAECs and alveolar macrophages in PAH patients’ lungs, and PAECs 

showed increased TF and PAI-1, as well as decreased TM expression levels after stimulation with recombinant 

LIGHT [216]. 

4.3. Vasoconstriction 

The major vasoconstrictors released by platelets and elevated in PH patients’ lungs are TXA-2 and serotonin [26, 

188] (Figure 5). Because activated platelets also reduce endothelial NO and PGI2 production, they exacerbate the 

imbalances between vasodilators and vasoconstrictors, promoting vasoconstriction. 

There is also evidence that tetrahydrobiopterin (BH4), a cofactor and regulator of eNOS function, is produced by 

platelets [217]. Mice deficient in BH4 showed increased susceptibility to hypoxia-induced PH, while BH4 

supplementation reduced vascular tone and remodelling, preventing disease development [218]. Decreased BH4 

production due to platelet dysfunction may therefore contribute to impaired NO production and vasoconstriction.  

4.4. Platelet Microparticles  

Microparticles (MPs) are vesicle fragments (0.1-1μm in size) derived from plasma membranes of many cell types, 

usually upon cellular activation or stress, such as apoptosis [219]. Increased platelet MPs (PMPs) levels have been 

found in various types of PH, compared with healthy controls [220], and their membranes were shown to be 50 to 100 

times more pro-coagulant than activated platelets’ surfaces [221]. Indeed, increased TF and CD40L expression were 

found on PMP surfaces in PAH patients, who also displayed increased phosphatidylserine-positive MPs in their Pas 

[222]. PMPs were shown to regulate vascular tone through TXA-2 production [223], induce in vitro vascular SMCs 

proliferation [224], as well as VEGF- and PDGF-mediated in vitro and in vivo angiogenesis in a rat aortic ring model 

[225] (Figure 5). Additionally, incubation of rat PAECs with PMPs from hypoxic PH animals reduced endothelial NO 

production and increased oxidative stress, while in vivo injections of those PMPs impaired endothelium-dependent 

relaxation in rat Pas [226]. In PAH patients, PMPs displayed elevated CD39 nucleotidase activity [227], which may 

promote vasoconstriction and platelet activation through increased ADP production.  

PMPs have also been shown to induce endothelial production of IL-1β, IL-6, and TNF, as well as ICAM-1 

expression [228], indicating that PMPs may promote further platelet aggregation and local inflammation. Interestingly, 

PMPs shedding was found to be induced by shear stress, with evidence of increased PMPs levels in patients with 

severe aortic valve stenosis [229]. This could be relevant in conditions of increased shear stress and flow disturbances 

caused by arterial luminal narrowing and/or thrombotic occlusion in PH.  
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Figure 5. The contribution of platelet-derived factors to PH pathobiology 

This figure summarises the contribution of platelet-derived factors to vasoconstriction, vascular remodelling and 

inflammation in pulmonary hypertension (PH). Vasoactive mediators, growth and angiogenic factors, inflammatory 

cytokines and platelet-derived microparticles (PMPs) are released upon platelet activation. All these factors induce 

endothelial dysfunction, leading to imbalances in nitric oxide (NO) and prostacyclin (PGI2) production, and the switch 

towards an endothelial pro-thrombotic phenotype, which enhance platelet adhesion, activation and aggregation. This 

in turn causes further release of vasoactive factors from platelet, creating a vicious cycle of vascular remodelling and 

platelet activation. Many of the growth and angiogenic factors released by platelets promote endothelial cells (ECs) 

and fibroblast proliferation, smooth muscle cells (SMCs) proliferation and migration, as well as endothelial progenitor 

cells (EPCs) differentiation, which are major features of the vascular remodelling observed in PH. (IL-6/8: interleukin-

6/8; LIGHT: lymphotoxin-like inducible protein that competes with glycoprotein D for Herpesvirus entry mediator on 

T lymphocytes; PAF: platelet activating factor; PDGF: platelet-derived growth factor; sCD40L: soluble CD40 ligand; 

SDF-1a: stromal-derived factor-1a; TXA-2: thromboxane A-2; VEGF: vascular endothelial growth factor) 

5. Targeting Platelets in Pulmonary Hypertension Treatment 

Most therapeutic strategies in PAH have been focused on targeting the endothelin, NO and prostacyclin pathways 

[36]. Available drug classes include prostacyclin analogues, endothelin receptors antagonists (ERAs), and 

phosphodiesterase (PDE)-5 inhibitors [36]. PH due to lung disease and/or hypoxia, and CTEPH may be treated with 

PAH-approved drugs under specific conditions, but there are no randomised controlled trials supporting the use of 

PAH drugs in other forms of PH [36].  

Current therapies successfully target vasoconstriction, but have a modest effect on vascular remodelling. Mortality 

rate in PH is high (>20% within 1 year of diagnosis in high risk patients) [230], and novel, more effective and better 

targeted therapies are needed. As previously described, platelets show strong links with PH pathobiology, providing a 

rationale for the use of anticoagulation or antiplatelet drugs in disease therapy. This section will describe the 

therapeutic potential of new anti-platelet drugs and comment on beneficial, anti-thrombotic effects of current PH 

treatments.  

5.1. Anticoagulation and Anti-platelet Drugs 

Most recent treatment guidelines recommend warfarin for IPAH, HPAH and anorexigen-induced PAH, and for 

CTEPH patients, even after PTE [36]. However, the main evidence is derived from observational and registry studies 

[6, 231-233], and there is an urgent need for randomised controlled trials specifically evaluating the benefits of 

anticoagulants in PAH and other forms of PH. In the SERAPHIN trial, which assessed the therapeutic effects of a 

novel ERA, macitentan, in concomitance with other treatments, no significant difference in mortality and morbidity 

was found between the placebo and warfarin-treated patients [36]. In the COMPERA registry, anticoagulation use was 

associated with a 21% increase in IPAH patient survival [6]. A recent meta-analysis, which included 12 non-
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randomised studies, demonstrated that anticoagulation therapy significantly reduced mortality in IPAH patients, but 

increased mortality in scleroderma-associated PAH patients [234], indicating that anticoagulation should be carefully 

tailored to the PAH subtype.  

Anti-platelet therapy has also been assessed in PAH. A randomised controlled trial of 19 IPAH patients found that 

aspirin and clopidogrel reduced platelet aggregation, with aspirin but not clopidogrel reducing urinary TXA-2 

metabolites levels, as well as the TXA-2:PGI2 ratio [235]. Another controlled study of aspirin and simvastatin in 92 

PAH patients found reduced TXA-2 production, but no effects on platelet aggregation and 6-minutes walking distance 

test (6MWDT) results compared to controls [236]. Interestingly, aspirin reduced PAP, RV hypertrophy and improved 

survival in MCT rat models, which was associated with decreased plasma levels of platelet-derived serotonin [237].  

The efficacy of anti-platelet therapies therefore remains inconclusive. Other drugs interfering with platelet-

endothelial interactions, such as monoclonal antibodies against the VWF A1 domain [238] or platelet GPIIb/IIIa [239] 

may be of relevance in PH treatment. 

5.2. Prostacyclin Analogues 

As previously mentioned, PGI2 is a key inhibitor of platelet aggregation[104], beside its vasodilatory and anti-

proliferative effects [102, 103]. Many PGI2 analogues are used in PAH treatment, including epoprostenol or iloprost 

[36]. Iloprost was shown to directly inhibit agonist-induced platelet activation [240], while continuous epoprostenol 

infusion increased TM, decreased P-selectin levels [241], and normalised platelet aggregation [242] in primary and 

secondary PH patients. Epoprostenol was also shown to decrease LIGHT serum levels in PAH patients [216], and 

inhibit PMPs formation in whole blood [243]. These data suggest that the benefits of PGI2 therapy in PH patients could 

partially be explained by their inhibitory action on platelets.  

5.3. Phosphodiesterase Inhibitors 

PDE-5 is one of the most active PDEs in the pulmonary vasculature, and promotes vasoconstriction by inhibiting 

cGMP in the NO/cGMP pathway [244]. Sildenafil, vardenafil and tadalafil are all PDE-5is approved for the treatment 

of erectile dysfunction, and have been shown to induce significant pulmonary vasodilation in PAH patients [245]. 

Sildenafil reduced platelet activation in sickle-cell disease-associated PAH [246], while vardenafil blocked platelet 

Ca2+ channels, reducing Ca2+ mobilisation and influx in thrombin-stimulated, rabbit washed platelets [247].  

Milirone is a PDE-3 inhibitor used for PPHN[248] and post-operative PH [249] treatment. While it has been shown 

to inhibit platelet activation [250], it also has a side effect of thrombocytopenia [251]. It currently remains unclear 

whether the benefits of milirone are due to its antiplatelet or vasodilatory actions. 

5.4. PDGFR Inhibitors 

Imatinib is a multi-kinase (including PDGFR tyrosine kinase) inhibitor, which has been shown to reverse vascular 

remodelling in MCT rats and chronic hypoxia mice [175]. When combined with other PAH-approved drugs, including 

epoprostenol or sildenafil, imatinib improved the haemodynamics and functional capacities of severe PAH patients 

[252]. Sorafenib is another PDGFR inhibitor, demonstrated to prevent vascular remodelling and improve cardio-

pulmonary functions in experimental PH[165]. PDGFR inhibitors may therefore exert their beneficial actions by 

counteracting the mitogenic [171] and chemoattractant [172] effects of platelet-derived PDGF on PASMCs. 

5.5. Serotonin Antagonists 

Serotonin transport and signalling could be a promising therapeutic target in PH. Indeed, inhibition of the 5HT-

1BR attenuated hypoxia-induced PH in rat models [253], while PH patients receiving selective serotonin reuptake 

inhibitors (SSRIs) had a decreased mortality compared to those not receiving SSRIs [254]. Another study 

demonstrated that SERT inhibition decreased serotonin-induced proliferation of PASMC from IPAH patients in vitro 

by interfering with the ROCK signalling pathway [195]. A selective 5-HT-2BR antagonist (PRX-8066) was assessed 

in a randomised controlled trial of 72 COPD-associated PAH patients (trial no. NCT00677872), but only modest 

reductions in systolic PAP were observed, and the trial was discontinued. After encouraging pre-clinical results in 

MCT rat models [255], Terguride, a dual 5-HT-2A/BRs antagonist, was also tested in IPAH and PAH with connective 

tissue disease patients, but no improvements in haemodynamics, 6MWDT or time to clinical worsening were observed 

[256]. Only patients on background ERAs therapy showed improvements in PVR [256]. Interestingly, SERT, but not 

5-HT receptors antagonists, limited PH patients-derived PASMCs growth responses to serotonin [192], suggesting that 

SERT may be a better therapeutic target than 5HTRs. 

5.6. Other Therapies 

NO is a potent inhibitor of platelet activation and aggregation [257], which explains the benefits of inhaled NO 
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administration in acute PH after cardiac surgery [258] and in PPHN [259]. Inhibition of TXA-2 synthesis with 

furegrelate sodium preserved vascular integrity and lowered PVR in chronic hypoxia piglets [260], and a recent study 

demonstrated that a novel antagonist of the thromboxane prostanoid receptor, NTP42, reduced mPAP, RV systolic 

pressure, vascular remodelling, inflammation and fibrosis in MCT-induced PAH rat models [261].  

Determining whether platelet dysfunction and aggregation are a cause or consequence of PH pathobiology 

constitutes a challenge. While platelets are appealing therapeutic targets, their effects on the vasculature are complex, 

and a better understanding of how platelet content and degranulation are modulated is required. Some factors may be 

protective in PH, such as soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK), whose reduced 

platelet storage levels are associated with worse prognosis in PAH [262]. Therefore, simply inhibiting platelet activity 

may not be the solution in the inflammatory context of PH, and therapeutic strategies must be carefully designed.  

6. Investigating the Role of Platelets in Pulmonary Hypertension: Current Models 

6.1. In Vivo Models 

Intravital microscopy has been used since the 19th century [76], and the latest advances in the field have allowed 

highly precise, real-time in vivo monitoring of platelet adhesion and thrombus formation [263]. Current techniques 

mostly use murine systems, and involve inducing platelet aggregation via mechanical [264], electrical laser [265], 

chemical (FeCl3) [266] or photochemical [267] injury to the vascular wall. Other methods using lipopolysaccharide 

[268] or calcium ionophores [123] have been used to promote platelet-endothelial interactions, but these usually do 

not result in full thrombogenesis.  

These methods all cause thrombus formation through different mechanisms, and should therefore be chosen 

according to the experimental question to be addressed. For instance, while FeCl3-induced injury involves endothelial 

denudation and subendothelial platelet adhesion [266], photochemical techniques do not deteriorate the endothelium, 

and thrombus formation is initiated by platelet-endothelial interactions [267].  

Although useful for studying the mechanisms involved in platelet aggregation and thrombogenesis, these models 

may introduce artefacts and deviate from physiological relevance. To overcome this, mice transgenic for genes 

involved in haemostasis and fibrinolysis have been developed [269], but the major differences between human and 

mice vascular systems make murine findings challenging to translate into clinical practice [270].   

Animal models of CTEPH have been developed since the 1990s, although none of them are representative of all 

human CTEPH features [271, 272]. One piglet model of CTEPH, developed by primary left PA ligation via 

sternotomy, followed by weekly transcatheter embolizations of Histoacryl into the right lower lobe for 5 weeks, was 

able to reconstruct most aspects of the disease, notably its dual pulmonary vascular bed component [273]. However, 

no model currently replicates the impaired fibrinolysis characteristic of CTEPH. 

Many other models of PH exist, with MCT-[274], chronic hypoxia-[275] and Sugen-induced PH rats [166] and 

mice [276] being the most commonly used. Rats are usually better than mice in reflecting the degree of vascular 

remodelling observed in PAH patients [166, 274-276], although none of the existing models can accurately recreate all 

the features of human PH. 

6.2. In Vitro Models 

Many standardised in vitro assays exist to evaluate platelet function and aggregation, including platelet 

aggregometry [141, 151] and flow cytometry [142]. Platelet aggregometry involves exposing platelets to agonists (eg 

ADP, thrombin or TXA-2) in vitro, and has been used to identify platelet function abnormalities in CTEPH [141] and 

PAH [151].  

However, considering the importance of haemodynamics and other blood components in thrombus formation, the 

static and isolated nature of these assays makes them physiologically irrelevant. Additionally, most of them require 

large amounts of whole blood [141, 142], a major limiting factor in many clinical situations.   

Microfluidic devices, where blood or isolated platelets are perfused through microscopic-size channels, address 

some of these limitations, and their development has boomed over the past decades. First designed 50 years ago [277], 

these devices have enabled the investigation of many cellular and molecular mechanisms involved in haemostasis and 

thrombosis in a reproducible manner. Technological advancements have also greatly reduced the blood volumes 

required for experiments (<1mL) [278, 279]. 

Extracellular matrix (for example collagen)-coated devices are one of the simplest models, widely used to simulate 

thrombotic responses to vascular injury [280], or to evaluate dose-responses to antiplatelet drugs [279]. However, such 

models do not fully replicate the important dynamics between ECs, platelets and shear stress and therefore poorly 

correlate with the in vivo observations [263]. More complex, endothelium-lined devices have since been developed 
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and used in modelling thrombosis modelled under physiological shear conditions [278, 281]. A wide range of parallel 

or Y-shaped flow chambers are commercially available, and new software programmes help the design of customised 

channels.  These usually provide a better reconstitution of the in vivo vessel geometries, such as stenosis or branch 

points, and have been used to model shear gradient-dependent platelet aggregation [105, 155]. More recently, Costa 

and colleagues [282] have used 3D-printing and computed tomography angiography data to recreate healthy and 

stenosed blood vessel chambers, lined with human umbilical vein endothelial cells (HUVECs).  

Nevertheless, the use of cellular monolayer does not reflect the true dynamic, multi-cellular vascular 

microenvironment. Organs-on-chips (OOCs) are microfluidic platforms within which one or more living cell 

population(s) can be cultured simultaneously under flow conditions, aiming to mimic tissue- and organ-level 

physiological environments [283]. A few models of thrombosis-on-chips have been published, for instance by Jain and 

colleagues [106], who showed that tissue-tissue interactions between the alveolar epithelium and vascular endothelium 

were required for lipopolysaccharide-mediated intravascular thrombosis. However, despite the availability of 

microfluidic arterial wall [284], biomimetic PA models [285], and a recently published PA-on-a-chip model [286] , 

the role of platelet aggregation in the context of PH pathobiology has not been assessed using OOC technologies.  

7. Conclusion 

Platelets are key players in the pathobiology of PH, through their involvement in thrombosis, vascular remodelling 

and vasoconstriction. While the true nature of platelets’ contribution to this complex, multifactorial disease is not fully 

understood, the degree of platelet contribution to the disease aetiology is likely to vary among functional classes of 

PH. Nevertheless, in all forms of PH, endothelial dysfunction, inflammation, NO/PGI2 reduction, and disturbed flow 

caused by luminal narrowing, favours a pro-thrombotic environment, leading to platelet aggregation. Activated and 

aggregated platelets are likely to promote further vascular remodelling and inflammation through the release of 

vasoactive and inflammatory mediators, worsening the clinical outcome.  

While the existing therapies are effective in reducing vasoconstriction, they fail to reverse vascular remodelling. 

Targeting platelet adhesion, aggregation and activation may be beneficial in PH and therapeutic strategies should be 

tailored to the individual patient’s needs. Despite the advances made in modelling platelet function, more 

physiologically relevant in vitro systems, utilising patient-derived cells and accounting for both vascular remodelling 

and the resultant flow disturbances, need to be designed 

8. Funding 

This work was funded by the Imperial College President’s PhD scholarships. 

9. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

10. Ethical Approval 

The manuscript does not contain experiments on animals and humans; hence ethical permission not required. 

11. References  

[1] Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial 

hypertension. Nature Reviews Cardiology, 8(8), 443–455. doi:10.1038/nrcardio.2011.87. 

[2] Becattini, C., Agnelli, G., Pesavento, R., Silingardi, M., Poggio, R., Taliani, M. R., & Ageno, W. (2006). Incidence of Chronic 

Thromboembolic Pulmonary Hypertension after a First Episode of Pulmonary Embolism. Chest, 130(1), 172–175. 

doi:10.1378/chest.130.1.172. 

[3] Simonneau, G., Gatzoulis, M. A., Adatia, I., Celermajer, D., Denton, C., Ghofrani, A., ... & Olschewski, H. (2013). Updated 

clinical classification of pulmonary hypertension. Journal of the American College of Cardiology, 62(25 Supplement), D34-

D41. 

[4] Humbert, M., Sitbon, O., Chaouat, A., Bertocchi, M., Habib, G., Gressin, V., ... & Dromer, C. (2006). Pulmonary arterial 

hypertension in France: results from a national registry. American journal of respiratory and critical care medicine, 173(9), 

1023-1030. 

[5] Badesch, D. B., Raskob, G. E., Elliott, C. G., Krichman, A. M., Farber, H. W., Frost, A. E., … McGoon, M. D. (2010). 

Pulmonary Arterial Hypertension. Chest, 137(2), 376–387. doi:10.1378/chest.09-1140. 

[6] Olsson, K. M., Delcroix, M., Ghofrani, H. A., Tiede, H., Huscher, D., Speich, R., … Hoeper, M. M. (2014). Anticoagulation 

and Survival in Pulmonary Arterial Hypertension. Circulation, 129(1), 57–65. doi:10.1161/circulationaha.113.004526. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

257 

 

[7] Augoustides, J., & Ramakrishna, H. (2009). Faculty Opinions recommendation of ACCF/AHA 2009 expert consensus 

document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert 

Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest 

Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. Faculty Opinions – Post-

Publication Peer Review of the Biomedical Literature. doi:10.3410/f.1164913.625748. 

[8] Thabut, G., Dauriat, G., Stern, J. B., Logeart, D., Levy, A., Marrash-Chahla, R., & Mal, H. (2005). Pulmonary Hemodynamics 

in Advanced COPD Candidates for Lung Volume Reduction Surgery or Lung Transplantation. Chest, 127(5), 1531–1536. 

doi:10.1378/chest.127.5.1531. 

[9] Miller, W. L., Grill, D. E., & Borlaug, B. A. (2013). Clinical Features, Hemodynamics, and Outcomes of Pulmonary 

Hypertension Due to Chronic Heart Failure With Reduced Ejection Fraction. JACC: Heart Failure, 1(4), 290–299. 

doi:10.1016/j.jchf.2013.05.001. 

[10] Bursi, F., McNallan, S. M., Redfield, M. M., Nkomo, V. T., Lam, C. S., Weston, S. A., ... & Roger, V. L. (2012). Pulmonary 

pressures and death in heart failure: a community study. Journal of the American College of Cardiology, 59(3), 222-231. 

[11] Thienemann, F., Dzudie, A., Mocumbi, A. O., Blauwet, L., Sani, M. U., Karaye, K. M., … Sliwa, K. (2016). The causes, 

treatment, and outcome of pulmonary hypertension in Africa: Insights from the Pan African Pulmonary Hypertension Cohort 

(PAPUCO) Registry. International Journal of Cardiology, 221, 205–211. doi:10.1016/j.ijcard.2016.06.242. 

[12] E. Mahmud et al., (2018). Chronic Thromboembolic Pulmonary~Hypertension, J. Am. Coll. Cardiol., 71(21), 2468–2486. 

[13] Gall, H., Hoeper, M. M., Richter, M. J., Cacheris, W., Hinzmann, B., & Mayer, E. (2017). An epidemiological analysis of the 

burden of chronic thromboembolic pulmonary hypertension in the USA, Europe and Japan. European Respiratory Review, 

26(143), 160121. doi:10.1183/16000617.0121-2016. 

[14] Ende-Verhaar, Y. M., Cannegieter, S. C., Vonk Noordegraaf, A., Delcroix, M., Pruszczyk, P., Mairuhu, A. T. A., … Klok, F. 

A. (2017). Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary 

view of the published literature. European Respiratory Journal, 49(2), 1601792. doi:10.1183/13993003.01792-2016. 

[15] Hoeper, M. M., Humbert, M., Souza, R., Idrees, M., Kawut, S. M., Sliwa-Hahnle, K., … Gibbs, J. S. R. (2016). A global view 

of pulmonary hypertension. The Lancet Respiratory Medicine, 4(4), 306–322. doi:10.1016/s2213-2600(15)00543-3. 

[16] Heath, D., & EDWARDS, J. E. (1958). The pathology of hypertensive pulmonary vascular disease: a description of six grades 

of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation, 18(4), 

533-547. 

[17] YI, E. S., KIM, H., AHN, H., STROTHER, J., MORRIS, T., MASLIAH, E., … FRIEDMAN, P. J. (2000). Distribution of 

Obstructive Intimal Lesions and Their Cellular Phenotypes in Chronic Pulmonary Hypertension. American Journal of 

Respiratory and Critical Care Medicine, 162(4), 1577–1586. doi:10.1164/ajrccm.162.4.9912131. 

[18] Zaiman, A., Fijalkowska, I., Hassoun, P. M., & Tuder, R. M. (2005). One Hundred Years of Research in the Pathogenesis of 

Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 33(5), 425–431. 

doi:10.1165/rcmb.f307. 

[19] Wilson, J. L., Yu, J., Taylor, L., & Polgar, P. (2015). Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from 

Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLOS ONE, 10(4), e0123662. 

doi:10.1371/journal.pone.0123662. 

[20] Eddahibi, S., Humbert, M., Fadel, E., Raffestin, B., Darmon, M., Capron, F., … Adnot, S. (2001). Serotonin transporter 

overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. Journal of 

Clinical Investigation, 108(8), 1141–1150. doi:10.1172/jci200112805. 

[21] Li, X., Zhang, X., Leathers, R., Makino, A., Huang, C., Parsa, P., … Thistlethwaite, P. A. (2009). Notch3 signaling promotes 

the development of pulmonary arterial hypertension. Nature Medicine, 15(11), 1289–1297. doi:10.1038/nm.2021. 

[22] Yu, Y., Fantozzi, I., Remillard, C. V., Landsberg, J. W., Kunichika, N., Platoshyn, O., … Yuan, J. X.-J. (2004). Enhanced 

expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National 

Academy of Sciences, 101(38), 13861–13866. doi:10.1073/pnas.0405908101. 

[23] Cheng, X., Wang, Y., & Du, L. (2019). Epigenetic Modulation in the Initiation and Progression of Pulmonary Hypertension. 

Hypertension, 74(4), 733–739. doi:10.1161/hypertensionaha.119.13458. 

[24] Giaid, A., Yanagisawa, M., Langleben, D., Michel, R. P., Levy, R., Shennib, H., … Stewart, D. J. (1993). Expression of 

Endothelin-1 in the Lungs of Patients with Pulmonary Hypertension. New England Journal of Medicine, 328(24), 1732–1739. 

doi:10.1056/nejm199306173282402. 

[25] Giaid, A., & Saleh, D. (1995). Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with 

Pulmonary Hypertension. New England Journal of Medicine, 333(4), 214–221. doi:10.1056/nejm199507273330403. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

258 

 

[26] Christman, B. W., McPherson, C. D., Newman, J. H., King, G. A., Bernard, G. R., Groves, B. M., & Loyd, J. E. (1992). An 

Imbalance between the Excretion of Thromboxane and Prostacyclin Metabolites in Pulmonary Hypertension. New England 

Journal of Medicine, 327(2), 70–75. doi:10.1056/nejm199207093270202. 

[27] Masri, F. A., Xu, W., Comhair, S. A. A., Asosingh, K., Koo, M., Vasanji, A., … Erzurum, S. C. (2007). Hyperproliferative 

apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. American Journal of Physiology-Lung 

Cellular and Molecular Physiology, 293(3), L548–L554. doi:10.1152/ajplung.00428.2006. 

[28] Xu, W., Koeck, T., Lara, A. R., Neumann, D., DiFilippo, F. P., Koo, M., ... & Dweik, R. A. (2007). Alterations of cellular 

bioenergetics in pulmonary artery endothelial cells. Proceedings of the National Academy of Sciences, 104(4), 1342-1347. 

[29] Huertas, A., Guignabert, C., Barberà, J. A., Bärtsch, P., Bhattacharya, J., Bhattacharya, S., … Wilkins, M. R. (2018). 

Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 51(4), 

1700745. doi:10.1183/13993003.00745-2017. 

[30] Soon, E., Holmes, A. M., Treacy, C. M., Doughty, N. J., Southgate, L., Machado, R. D., … Morrell, N. W. (2010). Elevated 

Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation, 

122(9), 920–927. doi:10.1161/circulationaha.109.933762. 

[31] Tuder, R. M., Groves, B., Badesch, D. B., & Voelkel, N. F. (1994). Exuberant endothelial cell growth and elements of 

inflammation are present in plexiform lesions of pulmonary hypertension. The American journal of pathology, 144(2), 275. 

[32] Kazimierczyk, R., & Kamiński, K. (2018). The role of platelets in the development and progression of pulmonary arterial 

hypertension. Advances in Medical Sciences, 63(2), 312–316. doi:10.1016/j.advms.2018.04.013. 

[33] Bjornsson, J., & Edwards, W. D. (1985). Primary Pulmonary Hypertension: A Histopathologic Study of 80 Cases. Mayo 

Clinic Proceedings, 60(1), 16–25. doi:10.1016/s0025-6196(12)65277-x. 

[34] Humbert, M., Guignabert, C., Bonnet, S., Dorfmüller, P., Klinger, J. R., Nicolls, M. R., … Rabinovitch, M. (2019). Pathology 

and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 53(1), 

1801887. doi:10.1183/13993003.01887-2018. 

[35] Hoeper, M. M., Bogaard, H. J., Condliffe, R., Frantz, R., Khanna, D., Kurzyna, M., ... & Wilkins, M. R. (2013). Definitions 

and diagnosis of pulmonary hypertension. Journal of the American College of Cardiology, 62(25 Supplement), D42-D50. 

[36] Galiè, N., Humbert, M., Vachiery, J. L., Gibbs, S., Lang, I., Torbicki, A., ... & Ghofrani, A. (2016). 2015 ESC/ERS guidelines 

for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of 

Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed 

by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung 

Transplantation (ISHLT). European heart journal, 37(1), 67-119. 

[37] McLaughlin, V. V., Hoeper, M. M., Channick, R. N., Chin, K. M., Delcroix, M., Gaine, S., … Galiè, N. (2018). Pulmonary 

Arterial Hypertension-Related Morbidity Is Prognostic for Mortality. Journal of the American College of Cardiology, 71(7), 

752–763. doi:10.1016/j.jacc.2017.12.010. 

[38] Gilmour, J. R., & Evans, W. (1946). Primary pulmonary hypertension. The Journal of Pathology and Bacteriology, 58(4), 687–

697. doi:10.1002/path.1700580410. 

[39] Le Cras, T. D., Hardie, W. D., Fagan, K., Whitsett, J. A., & Korfhagen, T. R. (2003). Disrupted pulmonary vascular 

development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-α. American Journal 

of Physiology-Lung Cellular and Molecular Physiology, 285(5), L1046–L1054. doi:10.1152/ajplung.00045.2003. 

[40] Geiger, R., Berger, R. M. F., Hess, J., Bogers, A. J. J. C., Sharma, H. S., & Mooi, W. J. (2000). Enhanced expression of 

vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. The Journal of 

pathology, 191(2), 202-207. doi:10.1002/(SICI)1096-9896(200006)191:2<202::AID-PATH608>3.0.CO;2-D. 

[41] Ranchoux, B., Antigny, F., Rucker-Martin, C., Hautefort, A., Péchoux, C., Bogaard, H. J., … Perros, F. (2015). Endothelial-to-

Mesenchymal Transition in Pulmonary Hypertension. Circulation, 131(11), 1006–1018. 

doi:10.1161/circulationaha.114.008750. 

[42] Zhou, C., Townsley, M. I., Alexeyev, M., Voelkel, N. F., & Stevens, T. (2016). Endothelial hyperpermeability in severe 

pulmonary arterial hypertension: role of store-operated calcium entry. American Journal of Physiology-Lung Cellular and 

Molecular Physiology, 311(3), L560–L569. doi:10.1152/ajplung.00057.2016. 

[43] Frid, M. G., Kale, V. A., & Stenmark, K. R. (2002). Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells via 

Endothelial-Mesenchymal Transdifferentiation. Circulation Research, 90(11), 1189–1196. 

doi:10.1161/01.res.0000021432.70309.28. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

259 

 

[44] Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., Reeves, J. T., … Stenmark, K. R. (2006). Hypoxia-

Induced Pulmonary Vascular Remodeling Requires Recruitment of Circulating Mesenchymal Precursors of a 

Monocyte/Macrophage Lineage. The American Journal of Pathology, 168(2), 659–669. doi:10.2353/ajpath.2006.050599. 

[45] Davie, N. J., Crossno, J. T., Frid, M. G., Hofmeister, S. E., Reeves, J. T., Hyde, D. M., … Stenmark, K. R. (2004). Hypoxia-

induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. American Journal of 

Physiology-Lung Cellular and Molecular Physiology, 286(4), L668–L678. doi:10.1152/ajplung.00108.2003. 

[46] Wang, X.-X., Zhang, F.-R., Shang, Y.-P., Zhu, J.-H., Xie, X.-D., Tao, Q.-M., … Chen, J.-Z. (2007). Transplantation of 

Autologous Endothelial Progenitor Cells May Be Beneficial in Patients With Idiopathic Pulmonary Arterial Hypertension. 

Journal of the American College of Cardiology, 49(14), 1566–1571. doi:10.1016/j.jacc.2006.12.037. 

[47] Zhao, Y. D., Courtman, D. W., Deng, Y., Kugathasan, L., Zhang, Q., & Stewart, D. J. (2005). Rescue of Monocrotaline-

Induced Pulmonary Arterial Hypertension Using Bone Marrow–Derived Endothelial-Like Progenitor Cells. Circulation 

Research, 96(4), 442–450. doi:10.1161/01.res.0000157672.70560.7b. 

[48] Southgate, L., Machado, R. D., Gräf, S., & Morrell, N. W. (2019). Molecular genetic framework underlying pulmonary arterial 

hypertension. Nature Reviews Cardiology, 17(2), 85–95. doi:10.1038/s41569-019-0242-x. 

[49] Atkinson, C., Stewart, S., Upton, P. D., Machado, R., Thomson, J. R., Trembath, R. C., & Morrell, N. W. (2002). Primary 

Pulmonary Hypertension Is Associated With Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic 

Protein Receptor. Circulation, 105(14), 1672–1678. doi:10.1161/01.cir.0000012754.72951.3d. 

[50] Gomez-Puerto, M. C., Zuijen, I., Huang, C. J., Szulcek, R., Pan, X., Dinther, M. A., … ten Dijke, P. (2019). Autophagy 

contributes to BMP type 2 receptor degradation and development of pulmonary arterial hypertension. The Journal of 

Pathology, 249(3), 356–367. doi:10.1002/path.5322. 

[51] Hong, K.-H., Lee, Y. J., Lee, E., Park, S. O., Han, C., Beppu, H., … Oh, S. P. (2008). Genetic Ablation of the Bmpr2 Gene in 

Pulmonary Endothelium Is Sufficient to Predispose to Pulmonary Arterial Hypertension. Circulation, 118(7), 722–730. 

doi:10.1161/circulationaha.107.736801. 

[52] J. H. Newman et al., (2001). Mutation in the Gene for Bone Morphogenetic Protein Receptor II as a Cause of Primary 

Pulmonary Hypertension in a Large Kindred. New England Journal of Medicine, 345(20), 1506–1506. 

doi:10.1056/nejm200111153452022. 

[53] Mehra, P., Mehta, V., Sukhija, R., Sinha, A. K., Gupta, M., Girish, M. P., & Aronow, W. S. (2019). Pulmonary hypertension 

in left heart disease. Archives of medical science: AMS, 15(1), 262-273. 

[54] Opitz, I., & Kirschner, M. (2019). Molecular Research in Chronic Thromboembolic Pulmonary Hypertension. International 

Journal of Molecular Sciences, 20(3), 784. doi:10.3390/ijms20030784. 

[55] Du, L., Sullivan, C. C., Chu, D., Cho, A. J., Kido, M., Wolf, P. L., … Thistlethwaite, P. A. (2003). Signaling Molecules in 

Nonfamilial Pulmonary Hypertension. New England Journal of Medicine, 348(6), 500–509. doi:10.1056/nejmoa021650. 

[56] Thompson, A. A. R., & Lawrie, A. (2017). Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends 

in Molecular Medicine, 23(1), 31–45. doi:10.1016/j.molmed.2016.11.005. 

[57] Inglesby, T. V., Singer, J. W., & Gordon, D. S. (1973). Abnormal fibrinolysis in familial pulmonary hypertension. The 

American Journal of Medicine, 55(1), 5–14. doi:10.1016/0002-9343(73)90144-7. 

[58] Pietra, G. G., Edwards, W. D., Kay, J. M., Rich, S., Kernis, J., Schloo, B., … Detre, K. M. (1989). Histopathology of primary 

pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National 

Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation, 80(5), 1198–1206. 

doi:10.1161/01.cir.80.5.1198. 

[59] Moser, K. M., Fedullo, P. F., Finkbeiner, W. E., & Golden, J. (1995). Do Patients With Primary Pulmonary Hypertension 

Develop Extensive Central Thrombi? Circulation, 91(3), 741–745. doi:10.1161/01.cir.91.3.741. 

[60] Blauwet, L. A., Edwards, W. D., Tazelaar, H. D., & McGregor, C. G. . (2003). Surgical pathology of pulmonary 

thromboendarterectomy: a study of 54 cases from 1990 to 2001. Human Pathology, 34(12), 1290–1298. 

doi:10.1016/j.humpath.2003.07.003. 

[61] Moser, K. M., Auger, W. R., & Fedullo, P. F. (1990). Chronic major-vessel thromboembolic pulmonary hypertension. 

Circulation, 81(6), 1735–1743. doi:10.1161/01.cir.81.6.1735. 

[62] Riedel, M., Stanek, V., Widimsky, J., & Prerovsky, I. (1982). Longterm Follow-up of Patients with Pulmonary 

Thromboembolism. Chest, 81(2), 151–158. doi:10.1378/chest.81.2.151. 

[63] Sacks, R. S., Remillard, C. V., Agange, N., Auger, W. R., Thistlethwaite, P. A., & Yuan, J. X.-J. (2006). Molecular Biology of 

Chronic Thromboembolic Pulmonary Hypertension. Seminars in Thoracic and Cardiovascular Surgery, 18(3), 265–276. 

doi:10.1053/j.semtcvs.2006.09.004. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

260 

 

[64] Pepke-Zaba, J., Delcroix, M., Lang, I., Mayer, E., Jansa, P., Ambroz, D., … Simonneau, G. (2011). Chronic Thromboembolic 

Pulmonary Hypertension (CTEPH). Circulation, 124(18), 1973–1981. doi:10.1161/circulationaha.110.015008. 

[65] Wolf, M., Boyer-Neumann, C., Parent, F., Eschwege, V., Jaillet, H., Meyer, D., & Simonneau, G. (2000). Thrombotic risk 

factors in pulmonary hypertension. European Respiratory Journal, 15(2), 395-399. 

[66] Bonderman, D., Turecek, P., Jakowitsch, J., Weltermann, A., Adlbrecht, C., Schneider, B., … Lang, I. (2003). High 

prevalence of elevated clotting factor VIII in chronic thromboembolic pulmonary hypertension. Thrombosis and Haemostasis, 

90(09), 372–376. doi:10.1160/th03-02-0067. 

[67] Morris, T. A., Marsh, J. J., Chiles, P. G., Auger, W. R., Fedullo, P. F., & Woods, V. L. (2006). Fibrin Derived from Patients 

with Chronic Thromboembolic Pulmonary Hypertension Is Resistant to Lysis. American Journal of Respiratory and Critical 

Care Medicine, 173(11), 1270–1275. doi:10.1164/rccm.200506-916oc. 

[68] Suntharalingam, J., Goldsmith, K., van Marion, V., Long, L., Treacy, C. M., Dudbridge, F., … Morrell, N. W. (2008). 

Fibrinogen A  Thr312Ala polymorphism is associated with chronic thromboembolic pulmonary hypertension. European 

Respiratory Journal, 31(4), 736–741. doi:10.1183/09031936.00055107. 

[69] Bonderman, D., Jakowitsch, J., Adlbrecht, C., Schemper, M., Kyrle, P., Schönauer, V., … Lang, I. (2005). Medical conditions 

increasing the risk of chronic thromboembolic pulmonary hypertension. Thrombosis and Haemostasis, 93(03), 512–516. 

doi:10.1160/th04-10-0657. 

[70] Zabini, D., Heinemann, A., Foris, V., Nagaraj, C., Nierlich, P., Bálint, Z., … Olschewski, A. (2014). Comprehensive analysis 

of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. European Respiratory Journal, 44(4), 

951–962. doi:10.1183/09031936.00145013. 

[71] Azarian, R., Wartski, M., Collignon, M. A., & Parent, F. (1997). Lung perfusion scans and hemodynamics in acute and 

chronic pulmonary embolism. The Journal of nuclear medicine, 38(6), 980. 

[72] Moser, K. M., & Bioor, C. M. (1993). Pulmonary Vascular Lesions Occurring in Patients with Chronic Major Vessel 

Thromboembolic Pulmonary Hypertension. Chest, 103(3), 685–692. doi:10.1378/chest.103.3.685. 

[73] Sakao, S., Hao, H., Tanabe, N., Kasahara, Y., Kurosu, K., & Tatsumi, K. (2011). Endothelial-like cells in chronic 

thromboembolic pulmonary hypertension: crosstalk with myofibroblast-like cells. Respiratory Research, 12(1). 

doi:10.1186/1465-9921-12-109. 

[74] Firth, A. L., Yao, W., Ogawa, A., Madani, M. M., Lin, G. Y., & Yuan, J. X.-J. (2010). Multipotent mesenchymal progenitor 

cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. American 

Journal of Physiology-Cell Physiology, 298(5), C1217–C1225. doi:10.1152/ajpcell.00416.2009. 

[75] Egermayer, P., & Peacock, A. J. (2000). Is pulmonary embolism a common cause of chronic pulmonary hypertension? 

Limitations of the embolic hypothesis. European Respiratory Journal, 15(3), 440–448. doi:10.1034/j.1399-3003.2000.15.03.x. 

[76] Bizzozero, J. (1882). Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der 

Blutgerinnung. Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin, 90(2), 261–332. 

doi:10.1007/bf01931360. 

[77] Wright, J. H. (1906). The Origin and Nature of the Blood Plates. The Boston Medical and Surgical Journal, 154(23), 643–645. 

doi:10.1056/nejm190606071542301. 

[78] Ghoshal, K., & Bhattacharyya, M. (2014). Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in 

Disease Pathogenesis. The Scientific World Journal, 1–16. doi:10.1155/2014/781857. 

[79] Trowbridge, E. A., Martin, J. F., Slater, D. N., Kishk, Y. T., Warren, C. W., Harley, P. J., & Woodcock, B. (1984). The origin 

of platelet count and volume. Clinical physics and physiological measurement: an official journal of the Hospital Physicists' 

Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical 

Physics, 5(3), 145-170. 

[80] Gernsheimer, T., Stratton, J., Ballem, P. J., & Slichter, S. J. (1989). Mechanisms of Response to Treatment in Autoimmune 

Thrombocytopenic Purpura. New England Journal of Medicine, 320(15), 974–980. doi:10.1056/nejm198904133201505. 

[81] Versteeg, H. H., Heemskerk, J. W. M., Levi, M., & Reitsma, P. H. (2013). New Fundamentals in Hemostasis. Physiological 

Reviews, 93(1), 327–358. doi:10.1152/physrev.00016.2011. 

[82] Monroe, D., & Hoffman, M. (2001). A Cell-based Model of Hemostasis. Thrombosis and Haemostasis, 85(06), 958–965. 

doi:10.1055/s-0037-1615947. 

[83] Vine, A. K. (2009). Recent Advances in Haemostasis and Thrombosis. Retina, 29(1), 1–7. 

doi:10.1097/iae.0b013e31819091dc. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

261 

 

[84] Drake, T. A., Morrissey, J. H., & Edgington, T. S. (1989). Selective cellular expression of tissue factor in human tissues. 

Implications for disorders of hemostasis and thrombosis. The American journal of pathology, 134(5), 1087. 

[85] Lin, M. C., Almus-Jacobs, F., Chen, H. H., Parry, G. C., Mackman, N., Shyy, J. Y., & Chien, S. (1997). Shear stress induction 

of the tissue factor gene. Journal of Clinical Investigation, 99(4), 737–744. doi:10.1172/jci119219. 

[86] Yan, S.-F., Lu, J., Zou, Y. S., Kisiel, W., Mackman, N., Leitges, M., … Stern, D. (2000). Protein Kinase C-β and Oxygen 

Deprivation. Journal of Biological Chemistry, 275(16), 11921–11928. doi:10.1074/jbc.275.16.11921. 

[87] Kamimura, M., Bea, F., Akizawa, T., Katus, H. A., Kreuzer, J., & Viedt, C. (2004). Platelet-Derived Growth Factor Induces 

Tissue Factor Expression in Vascular Smooth Muscle Cells via Activation of Egr-1. Hypertension, 44(6), 944–951. 

doi:10.1161/01.hyp.0000146908.75091.99. 

[88] Schecter, A. D., Rollins, B. J., Zhang, Y. J., Charo, I. F., Fallon, J. T., Rossikhina, M., … Taubman, M. B. (1997). Tissue 

Factor Is Induced by Monocyte Chemoattractant Protein-1 in Human Aortic Smooth Muscle and THP-1 Cells. Journal of 

Biological Chemistry, 272(45), 28568–28573. doi:10.1074/jbc.272.45.28568. 

[89] Giesen, P. L. A., Rauch, U., Bohrmann, B., Kling, D., Roque, M., Fallon, J. T., … Nemerson, Y. (1999). Blood-borne tissue 

factor: Another view of thrombosis. Proceedings of the National Academy of Sciences, 96(5), 2311–2315. 

doi:10.1073/pnas.96.5.2311. 

[90] Kao, K. J., Pizzo, S. V., & McKee, P. A. (1979). Demonstration and characterization of specific binding sites for factor 

VIII/von Willebrand factor on human platelets. Journal of Clinical Investigation, 63(4), 656–664. doi:10.1172/jci109348. 

[91] Weisel, J. W., Nagaswami, C., Vilaire, G., & Bennett, J. S. (1992). Examination of the platelet membrane glycoprotein IIb-IIIa 

complex and its interaction with fibrinogen and other ligands by electron microscopy. Journal of Biological Chemistry, 

267(23), 16637-16643. 

[92] Goto, S., Ikeda, Y., Saldívar, E., & Ruggeri, Z. M. (1998). Distinct mechanisms of platelet aggregation as a consequence of 

different shearing flow conditions. Journal of Clinical Investigation, 101(2), 479–486. doi:10.1172/jci973. 

[93] Kalafatis, M., Swords, N. A., Rand, M. D., & Mann, K. G. (1994). Membrane-dependent reactions in blood coagulation: role 

of the vitamin K-dependent enzyme complexes. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1227(3), 

113–129. doi:10.1016/0925-4439(94)90086-8. 

[94] Blair, P., & Flaumenhaft, R. (2009). Platelet α-granules: Basic biology and clinical correlates. Blood Reviews, 23(4), 177–189. 

doi:10.1016/j.blre.2009.04.001. 

[95] Holmsen, H., & Weiss, H. J. (1979). Secretable Storage Pools in Platelets. Annual Review of Medicine, 30(1), 119–134. 

doi:10.1146/annurev.me.30.020179.001003. 

[96] Antoniades, C., Bakogiannis, C., Tousoulis, D., Demosthenous, M., Marinou, K., & Stefanadis, C. (2010). Platelet Activation 

in Atherogenesis Associated with Low-Grade Inflammation. Inflammation & Allergy - Drug Targets, 9(5), 334–345. 

doi:10.2174/187152810793938035. 

[97] Boilard, E., Nigrovic, P. A., Larabee, K., Watts, G. F. M., Coblyn, J. S., Weinblatt, M. E., … Lee, D. M. (2010). Platelets 

Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production. Science, 327(5965), 580–583. 

doi:10.1126/science.1181928. 

[98] Coral-Alvarado, P., Quintana, G., Garces, M. F., Cepeda, L. A., Caminos, J. E., Rondon, F., … Restrepo, J. F. (2008). 

Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis. Rheumatology 

International, 29(9), 1017–1024. doi:10.1007/s00296-008-0829-8. 

[99] Cefle, A., Inanc, M., Sayarlioglu, M., Kamali, S., Gul, A., Ocal, L., … Konice, M. (2009). Pulmonary hypertension in 

systemic lupus erythematosus: relationship with antiphospholipid antibodies and severe disease outcome. Rheumatology 

International, 31(2), 183–189. doi:10.1007/s00296-009-1255-2 

[100] Palta, S., Saroa, R., & Palta, A. (2014). Overview of the coagulation system. Indian Journal of Anaesthesia, 58(5), 515. 

doi:10.4103/0019-5049.144643. 

[101] Kumar, N. G., Clark, A., Roztocil, E., Caliste, X., Gillespie, D. L., & Cullen, J. P. (2015). Fibrinolytic activity of endothelial 

cells from different venous beds. Journal of Surgical Research, 194(1), 297–303. doi:10.1016/j.jss.2014.09.028. 

[102] Palmer, R. M. J., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of 

endothelium-derived relaxing factor. Nature, 327(6122), 524–526. doi:10.1038/327524a0. 

[103] Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin 

endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665. 

doi:10.1038/263663a0. 



SciMedicine Journal         Vol. 2, No. 4, December, 2020 

262 

 

[104] Botting, R., & Vane, J. R. (1989). Mediators and the Anti-Thrombotic Properties of the Vascular Endothelium. Annals of 

Medicine, 21(1), 31–38. doi:10.3109/07853898909149179. 

[105] Westein, E., van der Meer, A. D., Kuijpers, M. J. E., Frimat, J.-P., van den Berg, A., & Heemskerk, J. W. M. (2013). 

Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent 

manner. Proceedings of the National Academy of Sciences, 110(4), 1357–1362. doi:10.1073/pnas.1209905110. 

[106] Jain, A., Barrile, R., van der Meer, A., Mammoto, A., Mammoto, T., De Ceunynck, K., … Ingber, D. (2017). Primary Human 

Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clinical Pharmacology & 

Therapeutics, 103(2), 332–340. doi:10.1002/cpt.742. 

[107] Eisenberg, P. R., Lucore, C., Kaufman, L., Sobel, B. E., Jaffe, A. S., & Rich, S. (1990). Fibrinopeptide A levels indicative of 

pulmonary vascular thrombosis in patients with primary pulmonary hypertension. Circulation, 82(3), 841–847. 

doi:10.1161/01.cir.82.3.841. 

[108] Kawut, S. M., Horn, E. M., Berekashvili, K. K., Widlitz, A. C., Rosenzweig, E. B., & Barst, R. J. (2005). von Willebrand 

Factor Independently Predicts Long-term Survival in Patients With Pulmonary Arterial Hypertension. Chest, 128(4), 2355–

2362. doi:10.1378/chest.128.4.2355. 

[109] Tournier, A., Wahl, D., Chaouat, A., Max, J.-P., Regnault, V., Lecompte, T., & Chabot, F. (2010). Calibrated automated 

thrombography demonstrates hypercoagulability in patients with idiopathic pulmonary arterial hypertension. Thrombosis 

Research, 126(6), e418–e422. doi:10.1016/j.thromres.2010.08.020. 

[110] White, R. J., Meoli, D. F., Swarthout, R. F., Kallop, D. Y., Galaria, I. I., Harvey, J. L., … Taubman, M. B. (2007). Plexiform-

like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. American Journal 

of Physiology-Lung Cellular and Molecular Physiology, 293(3), L583–L590. doi:10.1152/ajplung.00321.2006. 

[111] Lopes, A. A., Barreto, A. C., Maeda, N. Y., Cícero, C., Soares, R. P. S., Bydlowski, S. P., & Rich, S. (2011). Plasma von 

Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. 

Brazilian Journal of Medical and Biological Research, 44(12), 1269–1275. doi:10.1590/s0100-879x2011007500149. 

[112] Weerackody, R. P., Welsh, D. J., Wadsworth, R. M., & Peacock, A. J. (2009). Inhibition of p38 MAPK reverses hypoxia-

induced pulmonary artery endothelial dysfunction. American Journal of Physiology-Heart and Circulatory Physiology, 

296(5), H1312–H1320. doi:10.1152/ajpheart.00977.2008. 

[113] Warner, T. D. (1996). Influence of endothelial mediators on the vascular smooth muscle and circulating platelets and blood 

cells. International angiology: a journal of the International Union of Angiology, 15(2), 93-99. 

[114] Frenette, P. S., Johnson, R. C., Hynes, R. O., & Wagner, D. D. (1995). Platelets roll on stimulated endothelium in vivo: an 

interaction mediated by endothelial P-selectin. Proceedings of the National Academy of Sciences, 92(16), 7450–7454. 

doi:10.1073/pnas.92.16.7450. 

[115] McIntyre, T. M., Prescott, S. M., Weyrich, A. S., & Zimmerman, G. A. (2003). Cell-cell interactions: leukocyte-endothelial 

interactions. Current Opinion in Hematology, 10(2), 150–158. doi:10.1097/00062752-200303000-00009. 

[116] McEver, R. P., Beckstead, J. H., Moore, K. L., Marshall-Carlson, L., & Bainton, D. F. (1989). GMP-140, a platelet alpha-

granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. Journal 

of Clinical Investigation, 84(1), 92–99. doi:10.1172/jci114175. 

[117] Bernardo, A., Ball, C., Nolasco, L., Moake, J. F., & Dong, J. (2004). Effects of inflammatory cytokines on the release and 

cleavage of the endothelial cell–derived ultralarge von Willebrand factor multimers under flow. Blood, 104(1), 100–106. 

doi:10.1182/blood-2004-01-0107. 

[118] Federici, A. B., Bader, R., Pagani, S., Colibretti, M. L., Marco, L., & Mannucci, P. M. (1989). Binding of von Willebrand 

factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size. British Journal of Haematology, 73(1), 

93–99. doi:10.1111/j.1365-2141.1989.tb00226.x. 

[119] Savage, B., Saldívar, E., & Ruggeri, Z. M. (1996). Initiation of Platelet Adhesion by Arrest onto Fibrinogen or Translocation 

on von Willebrand Factor. Cell, 84(2), 289–297. doi:10.1016/s0092-8674(00)80983-6. 

[120] Sporn, L. A., Marder, V. J., & Wagner, D. D. (1986). Inducible secretion of large, biologically potent von Willebrand factor 

multimers. Cell, 46(2), 185–190. doi:10.1016/0092-8674(86)90735-x. 

[121] Arya, M., Anvari, B., Romo, G. M., Cruz, M. A., Dong, J.-F., McIntire, L. V., … López, J. (2002). Ultralarge multimers of 
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