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Abstract 

Objectives: Health threat from COVID-19 airborne infection has become a public emergency of international concern. 

During the ongoing coronavirus pandemic, people have been advised by the Centers for Disease Control and Prevention 

to maintain social distancing of at least 2 m to limit the risk of exposure to the coronavirus. Experimental data, however, 

show that infected aerosols and droplets trapped inside a turbulent puff cloud can travel 7 to 8 m. We carry out a physics 

modeling study for COVID-19 transport in air. Methodology: We propose a nuclear physics analogy-based modeling of 

the complex gas cloud and its payload of pathogen-virions. We estimate the puff effective stopping range adapting the 

high-energy physics model that describes the slow down of α-particles (in matter) via interactions with the electron cloud. 

Analysis Findings: We show that the cloud stopping range is proportional to the diameter of the puff times its density. We 

use our puff model to determine the average density of the buoyant fluid in the turbulent cloud. A fit to the experimental 

data yields 1.8 < 𝜌𝑃/𝜌𝑎𝑖𝑟 < 4.0, where 𝜌𝑃 and 𝜌𝑎𝑖𝑟 are the average density of the puff and the air. We demonstrate that 

temperature variation could cause an O (≲ ±8%) effect in the puff stopping range for extreme ambient cold or warmth. 

We also demonstrate that aerosols and droplets can remain suspended for hours in the air. Therefore, once the puff slows 

down sufficiently, and its coherence is lost, the eventual spreading of the infected aerosols becomes dependent on the 

ambient air currents and turbulence. 
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1. Introduction 

The current outbreak of the respiratory disease identified as COVID-19 is caused by the severe acute respiratory 

syndrome coronavirus 2, shortened to SARS-CoV-2 [1–4]. The outbreak was first reported in December 2019, and has 

become a worldwide pandemic with over 10 million cases as of 1 July 2020. SARS-CoV-2 have been confirmed 

worldwide and so the outbreak has been declared a global pandemic by the World Health Organization. The pandemic 

has spread around the globe to almost every region, with only a handful of the World Health Organization’s member 

states not yet reporting cases. Most of these states are small island nations in the Pacific Ocean, including Vanuatu, 

Tuvalu, Samoa, and Palau. 

The coronavirus can spread from person-to-person in an efficient and sustained way by coughing and sneezing. 

The virus can spread from seemingly healthy carriers or people who had not yet developed symptoms [5]. To 

understand and prevent the spread of the virus, it is important to estimate the probability of airborne transmission as 

aerosolization with particles potentially containing the virus. Before proceeding, we pause to note that herein we 

                                                           
* Corresponding author: luis.anchordoqui@lehman.cuny.edu 

 
http://dx.doi.org/10.28991/SciMedJ-2020-02-SI-7 

 This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights. 

http://www.scimedjournal.org/
https://creativecommons.org/licenses/by/4.0/


SciMedicine Journal         Vol. 2, Special Issue "COVID-19" 

84 

 

follow the convention of the World Health Organization and refer to particles which are ≳ 5𝜇𝑚 diameter as droplets 

and those ≲ 5𝜇𝑚 as aerosols or droplet nuclei [6]. 

There are various experimental measurements suggesting that SARS-CoV-2 may have the potential to be 

transmitted through aerosols; see e.g. [7-11]. Indeed, laboratory- generated aerosols with SARS-CoV-2 were found to 

keep a replicable virus in cell culture throughout the 3 hours of aerosol testing [12]. Of course these laboratory-

generated aerosols may not be exactly analogous to human exhaled droplet nuclei, but they helped in establishing that 

the survival times of SARS-CoV-2 depend on its environment, including survival times of: up to 72 hours on plastics, 

up to 48 hours on stainless steel, up to 24 hours on cardboard, up to 4 hours on copper, and in air for 3 to 4 hours [12]. 

On first glimpse this finding is surprising, as one would expect that the properties of air that degrade the SARS-CoV-2 

exterior should abate at roughly half that time if it were adhered to a surface (i.e. at least half the solid angle is mostly 

exposed to air). However, the laboratory-generated aerosols have shown that a precise description of SARS-CoV-2 

main characteristics requires more complex systems in which the virus would be chemisorbed by some surfaces and 

repelled by the others. More concretely, the survival probability of the virus is associated with the surface energies of 

the various materials that can reduce the solid angle exposed to air molecule collisions. These proper- ties can lead to 

remarkable differences, for example that between copper and stainless steel. Despite the fact both are metals, copper 

causes destruction of the virus much more rapidly than does stainless steel. 

The number of virions needed for infection is yet un- known. However, it is known that viral load differs 

considerably between SARS-CoV and SARS-CoV-2 [13]. A study of the variance of viral loads in patients of different 

ages found no significant difference between any pair of age categories including children [14]. 

Beyond a shadow of a doubt, a major question of this pandemic has been how far would be far enough to elude 

droplets and to diffuse droplet nuclei if a person nearby is coughing or sneezing. The rule of thumb for this pandemic 

has been a 2 m separation. Nevertheless, this has never been a magic number that guarantees complete protection. 

Indeed, experiment shows that: (i) respiratory particles emitted during a sneeze or cough are initially transported as a 

turbulent cloud that consists of hot and moist exhaled air and mucosalivary filaments; (ii) aerosols and small droplets 

trapped in the turbulent puff cloud could propagate 7 to 8 m [15-18]. Moreover, once the cloud slows down 

sufficiently, and its coherence is lost, the eventual spreading of the infected aerosols becomes dependent on the 

ambient air currents and turbulence [19]. In this paper we provide new guidance to address this question by 

introducing a physics model for SARS-CoV-2 transport in air. 

To develop some sense for the orders of magnitude involved, we begin by reviewing the experimental data. A 

survey of 26 analyses reporting particle sizes generated from breathing, coughing, sneezing and talking indicates that 

healthy individuals generate particles with sizes in the range 0.01≲𝐷𝑉/𝜇𝑚≲500, whereas individuals with infections 

produce particles in the range 0.05 ≲𝐷𝑉/𝜇𝑚≲ 500, where 𝐷𝑉 is the diameter of a respiratory particle (droplet or 

droplet nucleus) containing the virus [20]. The majority of the particles containing the virus have outlet velocities in 

the range 10 ≲𝑣𝑉,0/(𝑚/𝑠)≲ 30 [18, 21, 22]. Up to 104.6 particles are expelled at an initial velocity of 30 m/s during a 

sneeze, and a cough can generate approximately 103.5 particles with outlet velocities of 20 m/s [23]. 97% of coughed 

particles have sizes 0.5 ≲𝐷𝑉/𝜇𝑚≲ 12, and the primary size distribution is within the range 1 ≲𝐷𝑉/𝜇𝑚≲ 2 [24, 25]. The 

evaporation rate of the respiratory particles depends on the exposed surface area, 𝐴 ∼ 𝜋𝐷𝑉
2, while the particle’s 

volume scales as 𝑉 ∼ 𝜋𝐷𝑉
3/6. Therefore, the ratio of area to volume is 𝐴/𝑉 ∝ 1/𝐷𝑉, and it is the smallest droplets that 

will live the longest. 

The layout of the paper is as follows. In Sec. II we review the generalities of aerodynamic drag force and estimate 

the terminal speed of aerosols and droplets. In Sec. III we model the elastic scattering of the turbulent cloud with the 

air molecules and estimate the puff stop- ping range assuming standard ambient temperature and pressure conditions. 

After that, we use our puff model to determine the average density of the buoyant fluid in the turbulent cloud. The 

paper wraps up with some conclusions presented in Sec. IV. 

2. Terminal Speed 

When a particle propagates through the air, the surrounding air molecules have a tendency to resist its motion. This 

resisting force is known as the aerodynamic drag force. For a spherical particle, the aerodynamic drag force is given 

by: 

 (1) 

Where 𝜂𝑎𝑖𝑟 ≃ 1.8 × 10−5 𝑘𝑔/(𝑚. 𝑠) is the dynamic viscosity of air and vV is the virus velocity vector. Equation 1 is 

the well-known Stokes’ law, with the Cunningham slip correction factor ; see Appendix I for details. Stokes’ law 

assumes that the relative velocity of a carrier gas at a particle’s surface is zero; this assumption does not hold for small 

particles. The slip correction factor should be applied to Stokes’ law for particles smaller than 10 𝜇𝑚. 
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 (2) 

The particle Reynolds number is a dimensionless quantity which represents the ratio of inertial forces to viscous 

forces, where 𝜌𝑎𝑖𝑟 ≃1.2 kg/m3 is the air density at a temperature of 20◦ C (293 K). For R < 1, the inertial forces can be 

neglected. The drag calculated by Equation 1 has an error of about 12% at R  ≈ 1. The error decreases with decreasing 

particle Reynolds number. 

 For the case at hand, R > 1. In the vertical direction, the upward component of the aerodynamic drag force 𝐹𝑑 is 

counterbalanced by the excess of the gravitational attraction over the air buoyancy force: 

 (3) 

Where 𝜌𝐻2𝑂 ≃997 kg/m3 and g ≃ 9.8 m/s2 is the acceleration of gravity. Since 𝜌𝑎𝑖𝑟 ≪ 𝜌𝐻2𝑂 the air buoyancy force 

becomes negligible, and so 𝐹𝑔 ≈ 𝑀𝑉𝑔, with 𝑀𝑉 the aerosol mass. When the upward aerodynamic drag force equals the 

gravitational attraction the droplet reaches mechanical equilibrium and starts falling with a terminal speed: 

 (4) 

The terminal speed is ∝ 𝐷𝑉
2 (due to the diameter dependence of the mass), and hence larger droplets would have 

larger terminal velocities thereby reaching the ground faster. The terminal speed for various particle sizes is given in 

Table 1. The time 𝑡𝑓 it will take the virus to fall to the ground is simply given by the distance to the ground divided by

. For an initial height, ℎ ∼ 2 𝑚, we find that for 𝐷𝑉 = 2𝜇𝑚, 

 (5) 

The time scale as a function of the droplet size and height is shown in Figure 1. 

 

Figure 1. Contours of the time tf in minutes in the h − DV plane 
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Table 1. Cunningham slip correction factor and terminal speed 

DV (m)  vV,f, (m/s) 

0.001 215.3 6.51 × 10-9 

0.010 22.05 6.67 × 10-8 

0.100 2.851 8.62 × 10-7 

0.500 1.327 1.00 × 10-5 

1.000 1.163 3.52 × 10-5 

1.500 1.109 7.54 × 10-5 

2.000 1.081 1.31 × 10-4 

3.000 1.054 2.87 × 10-4 

5.000 1.033 7.81 × 10-4 

7.000 1.023 1.52 × 10-3 

10.000 1.016 3.07 × 10-3 

The aerodynamic drag force holds for rigid spherical particles moving at constant velocity relative to the gas flow. 

To determine the stopping range, in the next section we model the elastic scattering of the turbulent puff cloud with 

the air molecules. 

3. Stopping Range 

Respiratory particles of saliva and mucus are expelled together with a warm and humid air, which generates a 

convective current. The aerosols and droplets are initially transported as part of a coherent gas puff of buoyant fluid. 

The ejected puff of air remains coherent in a volume that varies from 0.00025 to 0.0025 m3 [26]. This corresponds to a 

puff size 0.78 ≲𝐷𝑃/𝑚≲1.68, where following [26] we have taken an entrainment coefficient of 𝛼 = 0.1 [27]. The puff 

is ejected with 1 ≲vV,0,∥/(m/s)≲10 [26]. The turbulent puff cloud consists of an admixture of moist exhaled air and 

mucosalivary filaments. Next, in line with our stated plan, we use the experimental data to calculate the range of the 

average density of the buoyant fluid in the turbulent cloud. 

The mass ratio of the average air molecule compared to the aerosol, 𝑚𝑎𝑖𝑟/𝑀𝑉, is roughly 10−12 (since the size of 

the aerosol and the mass for its chief constituent, 𝐻2𝑂, compared to the air molecule are 104 and 103), though there is 

an obvious variation with aerosol size at constant density. If we consider instead the mass inside the puff 𝑀𝑃 the ratio 

𝑅 ≡ 𝑚𝑎𝑖𝑟/𝑀𝑃 is even smaller. Due to the enormous mass ratio, the virions inside the puff will not undergo large 

angular deflections, so we will treat the virions as having the same direction for its initial and final velocities (since we 

are looking at a stopping distance, this is a reasonable assumption). Starting with the non-relativistic one-dimensional 

equation for the virus velocity  we have in the lowest nontrivial order (in R≪1) and any frame: 

 
(6) 

Where the matrix 𝑴 is derived by imposing conservation of energy and momentum, and is given by: 

 
(7) 

With 𝛽0 = 𝑣𝑉,0,∥, and 𝑣𝑎𝑖𝑟,0 and 𝑣𝑎𝑖𝑟,   𝑓 the initial and final velocities of the air molecule, respectively. As the velocity 

𝛽 falls with each interaction, the velocity loss remains constant; the target particle is a new air molecule at each 

interaction. 

Though individual air molecules are traveling at an average speed of a few hundred meters per second, throughout 

we assume the medium to be stationary. In analogy with the description of the slowing down of alpha particles in 

matter (which assumes the electronic cloud is at rest), we can describe the scattering of the puff in the frame in which 

the air molecule is at rest, i.e., 𝑣𝑎𝑖𝑟,0 = 0 (in essence, adopting a stationary medium on average). The stopping power 

is given by the velocity- loss equation: 
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 (8) 

With solution . Finally, we have for the stopping distance: 

 (9) 

With 𝛽𝑓 = 𝑣𝑉,𝑓,∥, Note that 𝐿/𝜆𝑚𝑓𝑝
𝑉  is not only the number of mean free paths traversed by the fiducial virus, but is 

also the number of interactions of the virus with air molecules; of course, there is a one-to-one correlation between the 

number of mean free paths travelled and interactions.    

Since 𝛽 is homogeneous and the mass ratio R is a constant for a given puff size 𝐷𝑃, we have the above simple 

equation. The mass ratio R is very small, and (2𝑅)−1 is correspondingly very large. There are a tremendous number of 

mean free paths/interactions involved as the virions bowling ball rolls over the air molecule. 

Finally, we must calculate 𝜆𝑚𝑓𝑝
𝑉 = 1/(𝜂𝑎𝑖𝑟𝜎). The air molecules act collectively as a fluid, so the volume V over 

the air density is given by the ideal gas law as 𝑘𝐵𝑇/𝑃, where 𝑃 is the pressure, 𝑇 the temperature, and 𝑘𝐵 is the 

Boltzmann constant. We assume a contact interaction equal to the cross-sectional hard-sphere size of the puff, i.e.    

𝜎 = 𝜋(𝐷𝑃/2)2. Substituting into Equation 9 we obtain the final result for the stopping distance. 

 (10) 

We take the sneeze or cough which causes the droplets expulsion to be at a standard ambient air pressure of        

𝑃 = 101 𝑘𝑃𝑎 and a temperature of 𝑇 ∼ 293 𝐾. It is important to stress that temperature variation could cause an O (

≲ ±8%) effect in 𝐿 for extreme ambient cold or warmth. We now proceed to fit the experimental data. For 𝐿 ∼ 8 𝑚 and 

taking 𝑣𝑉,𝑓,∥ ∼ 3 𝑚𝑚/𝑠 [16], we obtain 1.8 < 𝜌𝑃/𝜌𝑎𝑖𝑟 < 4.0 for 0.78 ≤ 𝐷𝑃/𝑚 ≤ 1.68, where 𝜌𝑃 is the average 

density of the fluid in the puff. 

A point worth noting at this juncture is that our model provides an effective description of the turbulent puff cloud. 

Note that independently of their size and their initial velocity all respiratory particles in the cloud experience both 

gravitational settling and evaporation. Aerosols and droplets of all sizes are subject to continuous settling, but those 

with settling speed smaller than the fluctuating velocity of the surrounding puff would remain trapped longer within 

the puff. Actually, because of evaporation the water content of the respiratory particles is monotonically decreasing. 

At the point of almost complete evaporation the settling velocity of the aerosols is sufficiently small that they can 

remain trapped in the puff and get advected by ambient air currents and dispersed by ambient turbulence. The size of 

the puff then continuously grows in time [26]. Our result can equivalently be interpreted in terms of the effective 

coherence length of the turbulent cloud assuming 𝜌𝑃 ∼ 𝜌𝑎𝑖𝑟 . The effective size of the puff and its effective density are 

entangled in Equation 10. Numerical simulations show that during propagation the puff edge grows ∝ 𝑡1/4 [16]. After 

a100 s the puff would grow by a factor of 3 [26], in agreement with our analytical estimates. In closing, we note that if 

we ignore the motion of the air puff carrying the aerosols, as in the analysis of Wells (1934) [28], it is straightforward 

to see substituting 𝑅 by 𝑚𝑎𝑖𝑟/𝑀𝑉 ∼ 10−12 into Equation 10 that the individual aerosols would not travel more than a 

few cm away from the exhaler, even under conditions of fast ejections, such as in a sneeze. This emphasizes the 

relevance of incorporating the complete multiphase flow physics in the modeling of respiratory emissions when 

ascertaining the risk of SARS-CoV-2 air- borne infection. 
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Figure 2. A flow chart showing the research methodology. The study of COVID-19 transport in air has been carried out 

using a modeling of the turbulent cloud. For a coherent length of 𝑫𝑷 the average density becomes 𝟏. 𝟖 < 𝝆𝑷/𝝆𝒂𝒊𝒓 < 𝟒. 𝟎. For 

𝝆𝑷 ∼ 𝝆𝒂𝒊𝒓 the effective size of the puff is 𝑫𝑷,   𝒆𝒇𝒇 ∼ 𝟏. 𝟖 𝑫𝑷. The latter is consistent with simulation studies which show that 

the coherent length evolves in time proportional to 𝒕𝟏/𝟒, and so after 100 s the final size of the coherent turbulent cloud is 

𝑫𝑷,   𝒇𝒊𝒏𝒂𝒍 ∼ 𝟑 𝑫𝑷. Viral transmission pathways have profound implications for public safety. Our study forewarns a health 

threat of COVID-19 airborne infection in indoor spaces. We argue in favor of implementing additional precautions to the 

recommended 2 m social distancing, e.g. wearing a face mask when we are out in public. 

4. Conclusion 

We have carried out a physics modeling study for SARS-CoV-2 transport in air. We have developed a nuclear 

physics analogy-based modeling of the complex gas cloud and its payload of pathogen-virions. Using our puff model 

we estimated the average density of the fluid in the turbulent cloud is in the range 1.8 < 𝜌𝑃/𝜌𝑎𝑖𝑟 < 4.0. A summary of 

our investigation is shown in Figure 2. We have also shown that aerosols and droplets can remain suspended for hours 

in the air. Therefore, once the puff slows down sufficiently, and its coherence is lost, the eventual spreading of the 

infected aerosols becomes dependent on the ambient air currents and turbulence. De facto, as it was first pointed out in 

[19] and later developed in [29, 30] airflow conditions strongly influence the distribution of viral particles in indoor 

spaces, cultivating a health threat from COVID-19 airborne infection. 

Altogether, it seems reasonable to adopt additional infection-control measures for airborne transmission in high-

risk settings, such as the use of face masks when in public. If the results of this study −𝑡𝑓 of 𝑂(ℎ𝑟)
 
for aerosols, for 

example – are borne out by experiment, then these findings should be taken into account in policy decisions going 

forward as we continue to grapple with this pandemic. 
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Appendix I 

There are important considerations in the development of Stokes’ law, including the hypothesis that the gas at 

particle surface has zero velocity relative to the particle. This hypothesis holds well when the diameter of the particle 

is much larger than the mean free path of gas molecules. The mean free path 𝜆𝑚𝑓𝑝
𝑎𝑖𝑟  is the average distance travelled by 

a gas molecule between two successive collisions. In analyses of the interaction between gas molecules and particles, 

it is convenient to use the Knudsen number 𝐾𝑛 = 2𝜆𝑚𝑓𝑝
𝑎𝑖𝑟 /𝐷𝑉 a dimensionless number defined as the ratio of the mean 

free path to particle radius. For Kn≳1, the drag force is smaller than predicted by Stokes’ law. Conventionally this 

condition is described as a result of slip on the particle surface. The so-called slip correction is estimated to be [31]: 

 (A1) 

In our calculations we take: 

 
(A2) 

Where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature in Kelvin, and the density of air is given by: 

 (A3) 

With 𝑃 = 101 𝑘𝑃𝑎, and where 𝑅𝑔 = 287.058 𝐽/(𝑘𝑔. 𝐾) is the ideal gas constant. The molar mass of air is 𝑚𝑚𝑜𝑙 =

29 𝑔/𝑚𝑜𝑙, which leads to 𝑚𝑎𝑖𝑟 = 4.8 × 10−26 𝑘𝑔/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒. 
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