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Abstract 

General Idea: Naturally produced droplets from humans (such as those produced by breathing, talking, sneezing, and 

coughing) include several types of cells (e.g., epithelial cells and cells of the immune system), physiological electrolytes 

contained in mucous and saliva (e.g. Na+, K+, Cl-), as well as, potentially, several infectious agents (e.g. bacteria, fungi, 

and viruses). In response to the novel coronavirus SARS-CoV-2 epidemic, which has become a major public health issue 

worldwide, we provide a concise overview of airborne germ transmission as seen from a physics perspective. We also 

study whether coronavirus aerosols can travel far from the immediate neighbourhood and get airborne with the 

convective currents developed within confined spaces. Methodology: Methods of fluid dynamics are utilized to analyse 

the behavior of various-size airborne droplets containing the virus. Study Findings: We show that existing vortices in the 

air can make a location far away from the source of the virus be more dangerous than a nearby (e.g., 6 feet away) 

location. Practical Implications: Our study reveals that it seems reasonable to adopt additional infection-control measures 

to the recommended 6 feet social distancing. We provide a recommendation that could help to slow down the spread of 

the virus. 
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1. Introduction  

The recent outbreak of the respiratory disease identified as COVID-19 is caused by the severe acute respiratory 

syndrome coronavirus 2, shortened to SARS-CoV- 2 [1-3]. The outbreak, first reported in December 2019, has rapidly 

evolved into a global pandemic. Indeed, COVID-19 is spreading across the globe with a speed and strength that laid 

bare the limits of our understanding of the transmission pathways and the associated factors that are key to the spread 

of such diseases. In particular, the virus can spread from seemingly healthy carriers or people who had not yet 

developed symptoms [4]. Overall, this has transformed the face of healthcare around the world. 

To understand and prevent the spread of a virus like SARS-CoV-2, it is important to estimate the probability of 

airborne transmission as aerosolization with particles potentially containing the virus. There have been reports 

favoring the possibility of creating coronavirus aerosols [5]. Thus far no aerosolized coronavirus particles have been 

found in hospital searches within the most public areas, but evidence has been detected in rooms of SARS-CoV-2 

patients [6-9]. In this paper we provide an overview on the possible threat of SARS-CoV-2 airborne infection from a 

physics point of view, focusing attention on the effect of convection currents in indoor spaces. 

The layout of the paper is as follows. In Sec. 2 we first provide a concise discussion of the motion of the virus in 

suspended aerosols. After that, using the SimScale program [10] we study the convective airflow in a meeting room 
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and office space. We show that existing vortices in the air can make a location far away from the source of the virus be 

more dangerous than nearby (e.g., 6 feet away) location. In Sec. 3 we present our conclusions. Throughout we adopt 

the convention of the World Health Organization to nickname particles that are  5 m diameter as droplets and those 

 5 m as aerosols or droplet nuclei [11]. 

2. Modeling the Effect of Convection Currents in the Transmission of SARS-COV-2 

In the presence of air resistance, compact heavy objects fall to the ground quickly, while light objects exhibit 

Brownian motion and follow the pattern of turbulent convection of the air. For aerosol particles containing the virus, 

the boundary between these two behaviors depends on the size of the particle. We begin with a simple question: how 

long does a virus float in the air under the influence of gravity? To answer this query we model the virus as a sphere of 

radius r  90 nm and mass m  2.5×10
-19

 kg [12], and we assume that this spherical particle is suspended in a viscous 

fluid (the air) feeling the Earth's gravitational field. Herein, gravity tends to make the particles settle, while diffusion 

and convection act to homogenize them, driving them into regions of smaller concentration. On the one hand, the 

convection mechanism provides particle macro- mixing within the fluid through the tendency of hotter and 

consequently less dense material to rise, and colder, denser material to sink under the influence of gravity. On the 

other hand, the diffusion mechanism acts on the scale of an individual particle (micro-mixing) slowly and randomly 

moving through the media. 

Under the action of gravity, the virus acquires a downward terminal speed that follows from Stokes law and is 

given by: 

𝑑𝑜𝑤𝑛 =  𝑚 𝑔                                                                    (1) 

Where g = 9.8 m/s
2
 is the acceleration due to gravity and; 

 =
1

6  𝑟
                                                                                           (2) 

Is the virus mobility in the fluid, and where  = 1.8×10
-5

 kg/(m s) is the dynamic viscosity of air [13]. Substituting 

(2) into (1) we find that the downward terminal speed of the virus in dry air is indeed negligible, down  8×10
-8 

m/s. It 

is therefore clear that gravity plays no role in the motion of an isolated virus through the air. Rather it follows a 

convection pattern in a manner similar to how smelly substances move through the air. The survival probability of the 

virus in the dry air is then given by the likelihood of survival outside its natural environment. The half-life of SARS-

CoV-2 in aerosols has been found to be about 1.1 hours [5]. 

We have seen that the coronavirus can go airborne staying suspended in the air. However, the virus is transmitted 

through respiratory droplets and droplet nuclei produced mostly while sneezing and coughing. Then to ascertain 

whether airborne transmissible SARS-CoV-2 can survive and stay infectious in aerosols we must double-check that 

the falling time of a droplet or droplet nuclei from a height of about two meters is larger than its evaporation time 

scale. To this end, we assume that the drops are also spherical and hence the mass can be simply estimated as: 

𝑚 =
4

3
𝑟3                                                                       (3) 

Where  = 997 kg/m
3
 is the density of water and r the droplet/aerosol radius. For large droplets whose diameters 

1000 m, the effect of air resistance is negligible and so the falling time can be directly estimated using Newton's 

equations for gravitational settling. For smaller droplets whose diameters < 100 m, the falling times must instead be 

determined using the downward terminal speed given in (1) to account for the air resistance upon the falling droplets. 

It is now an instructive and straightforward exercise to show that the time for falling 2 m in saturated air is 0.6 s for 

droplets with r > 500 m, 6.0 s for those of r 50 m, 600 s (about 10 minutes) for those of r  5 m, and 60,000 s 

(about 16.6 hours) for those of r  0.5 m. The droplet evaporation time scale, as computed by Wells using droplet 

evaporation data collected by Whytlaw-Gray and Patterson, is shown in Table 1 [14]. The assumption of pure water 

droplets in unsaturated air at 18C was used for the evaporation calculations, such that the theoretical droplets are 

capable of complete evaporation. By direct comparison of the droplet evaporation and falling times we can conclude 

that somewhere between 100 and 200 m lies the droplet size (i.e. the diameter) which identifies droplets of mouth 

spray that reach the ground within the life of the droplet as against droplets that evaporate and remain in the air as 

droplet-nuclei with attached SARS-CoV-2 infection. Several investigations have been carried out to continue 

improving the precision of Wells analyses and to study the various external environmental (such as temperature and 

humidity) factors that may alter his estimates; see e.g. [15]. 
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Table 1. Evaporation Time of Water Droplets 

Droplet diameter (m) Evaporation time (s) 

2000 660 

1000 165 

500 41 

200 6.6 

100 1.7 

50 0.4 

The sizes of the droplets and droplet-nuclei produced by sneezing and coughing were studied by the microscopic 

measurement of 12,000 droplet stain-marks found on slides exposed directly to mouth-spray, and of 21,000 stain-

containing droplet-nuclei recovered from the air on to oiled slides exposed in the slit sampler [16]. From this data 

sample it was found that the original diameters of respiratory droplets ranged from 1 to 2000 m and that 95 % were 

between 2 and 100 m and that the most common were between 4 and 8 m. Similar results were reported in Gralton 

et al. (2011) [17]. This suggests that, in principle, droplet-spray could drive direct airborne infection of SARS-CoV-2. 

The transmission of the COVID-19 disease, however, still depends on the infectious virus load carried by the droplets, 

which must be determined experimentally. The number of virions needed for infection is yet unknown, but we can use 

other viral transmission (e.g., influenza [18-20]) for a template. The spread of a sneeze in the air has been studied by 

ultrafast imaging at MIT [21-23]. It was found that even the largest droplets from a sneeze can float in the air for up to 

10 minutes, which allows them to reach the far end of a large room. This point towards convection in the air being the 

primary mechanism of the spread of the infection. 

From the physics point of view, we cannot find a good justification for a stationary 6-feet separation in a situation 

when people spend long time together in a room. Small droplets or aerosols containing the virus move in the air via 

convection. The convection pattern in a room can be very complex; see Figure 1.  

 

 

Figure 1. Visual representation of airflow streamlines in a meeting room (left) and office space (right) colored to velocity 

magnitude from low (blue) to high (red). The convection pattern in the meeting room demonstrates how the infection can be 

persistently carried by the airflow between two chairs separated by 6 feet. The convection pattern in the office space 

illustrates how the infection can be taken by the airflow from one cubicle to the other. Simulation by SimScale [10]. 
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It depends on the location of air conditioners, radiators, windows, and all items in the room, as well as on people 

producing vortices by moving around. The existing vortices in the air can make a location far away from the source of 

the virus more dangerous than the location 6 feet away. This applies to meeting rooms, office spaces, supermarkets, 

department stores, etc. The airflow pattern should be studied for all such facilities to avoid the spread of infection to 

large distances from a single infected person. The safest rooms must be those equipped with the air sucking ventilator 

at the top, like hospital surgery rooms [24]. 

By all means, re-configuring the ventilation of public and private facilities cannot be done within the timescale of 

the pandemic. The question is what to do now if we want to slow its pace. The answer is very simple. People must be 

required to wear face masks in public spaces to prevent the virus from becoming airborne in the first place.  

3. Conclusion 

Airborne SARS-CoV-2 virus spreads from infected individuals and accumulates in confined spaces where it can 

linger in the air in the aerosol form for hours. The inhaled virus load depends on the virus concentration in the air and 

the time of exposure. Concentration can vary from one spot to another. It depends on the location of the spreaders and 

the pattern of the airflow. The latter is determined by many factors, such as the location of doors and windows, 

ventilators, heaters, movement of people, etc. Common central air conditioning system that is cooling the indoor air 

but is not exchanging it with the outside air and is not filtering the virus helps to spread it across the air-conditioned 

space. It can easily take the virus to distant locations and make it accumulate in the least expected places. Computer 

studies of the airflow in public spaces are important for mitigating this problem. In the long run business and 

educational facilities should consider redesigning ventilation and air conditioning systems to effectively reduce 

concentration of the aerosol virus in the air. 

4. Funding 

The theoretical and computational techniques and resources used in this research were supported by the U.S. 

National Science Foundation, NSF Grant PHY-1620661 (L.A.A.), and the U.S. Department of Energy, Office of 

Science, DOE Grant DE- FG02-93ER45487 (E.C.). 

5. Role of the Funder/Sponsor  

The sponsors had no role in the preparation, review or approval of the manuscript and decision to submit the 

manuscript for publication. Any opinions, findings, and conclusions or recommendations expressed in this article are 

those of the authors and do not necessarily reflect the views of the NSF or DOE. 

6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

7. Ethical Approval 

The manuscript does not contain experiments on animals and humans; hence ethical permission not required. 

8. References 

[1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. 

Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, (2020). 

Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395-497. doi:10.1016/S0140-

6736(20)30183-5. 

[2] P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, H. Si, Y. Zhu, B. Li, C. Huang, H. Chen, J. Chen, Y. Luo, H. Guo, R. 

Jiang, M. Liu, Y. Chen, X. Shen, X. Wang, X. Zheng, K. Zhao, Q. Chen, F. Deng, L. Liu, B. Yan, F. Zhan, Y. Wang, G. Xiao, 

and Z. Shi, (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579(7798), 270–

273. doi:10.1038/s41586-020-2012-7. 

[3] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao,  B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. 

Xu,  G. Wu, G. F. Gao, and W. Tan, (2020). A novel coronavirus from patients with pneumonia in China, 2019, New England 

Journal of Medicine, 382(8), 727–733. doi:10.1056/nejmoa2001017. 

[4] C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. 

Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange, R. W\"olfel, M. Hoelscher, (2020). Transmission of 2019-nCoV 

Infection from an Asymptomatic Contact in Germany, New England Journal of Medicine, 382(10), 970–971. 

doi:10.1056/nejmc2001468. 



SciMedicine Journal         Vol. 2, Special Issue "COVID-19" 

72 

 

[5] N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. 

Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, (2020). Aerosol and surface stability of SARS-CoV-2 

as compared with SARS-CoV-1, New England Journal of Medicine, 382(16), 1564–1567. doi:10.1056/nejmc2004973. 

[6] S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu, (2020). Air, surface 

environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) from a symptomatic patient, JAMA, 323(16), 1610. doi:10.1001/jama.2020.322. 

[7] J. L. Santarpia, D. N. Rivera, V. Herrera, M. J. Morwitzer, H. Creager, G. W. Santarpia, K. K. Crown, D. M. Brett-Major, E. 

Schnaubelt, M. J. Broadhurst, J. V. Lawler, St. P. Reid, and J. J. Lowe, (2020). Transmission potential of SARS-CoV-2 in viral 

shedding observed at the University of Nebraska Medical Center, medRxiv preprint doi:10.1101/2020.03.23.20039446. 

[8] Y. Liu, Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, X. Liu, K. Xu, K.-f. Ho, H. Kan, 

Q. Fu, and K. Lan, (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals, Nature, 582(7813), 557–560. 

doi:10.1038/s41586-020-2271-3. 

[9] Z.-D. Guo, Z.-Y. Wang, S.-F. Zhang, X. Li, L. Li, C. Li, Y. Cui, R.-B. Fu, Y.-Z. Dong, X.-Y. Chi, M.-Y. Zhang, K. Liu, C. Cao, 

B. Liu, K. Zhang, Y.-W. Gao, B. Lu, and W. Chen, (2020). Aerosol and surface distribution of severe acute respiratory 

syndrome coronavirus 2 in hospital wards, Wuhan, China, Emerging Infectious Diseases, 26(7), 1583–1591. 

doi:10.3201/eid2607.200885. 

[10] SimScale - CFD, FEA, Thermal Simulation and CAE, Available Online: https://www.simscale.com (Accessed on 25 August 

2020). 

[11] Shiu, E. Y. C., Leung, N. H. L., & Cowling, B. J. (2019). Controversy around airborne versus droplet transmission of 

respiratory viruses. Current Opinion in Infectious Diseases, 32(4), 372–379. doi:10.1097/qco.0000000000000563. 

[12] Woo, P. C. Y., Huang, Y., Lau, S. K. P., & Yuen, K.-Y. (2010). Coronavirus Genomics and Bioinformatics Analysis. Viruses, 

2(8), 1804–1820. doi:10.3390/v2081803. 

[13] Einarsson, J., & Mehlig, B. (2017). Spherical particle sedimenting in weakly viscoelastic shear flow. Physical Review Fluids, 

2(6). doi:10.1103/physrevfluids.2.063301. 

[14] Wells, W. F. (1934). On Air-Borne Infection: Study Ii. Droplets and Droplet Nuclei. American journal of Epidemiology, 20(3), 

611-618. 

[15] Liu, F., Qian, H., Zheng, X., Song, J., Cao, G., & Liu, Z. (2019). Evaporation and dispersion of exhaled droplets in stratified 

environment. IOP Conference Series: Materials Science and Engineering, 609, 042059. doi:10.1088/1757-899x/609/4/042059. 

[16] Duguid, J. P. “The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet-Nuclei.” Epidemiology and 

Infection 44, no. 6 (September 1946): 471–479. doi:10.1017/s0022172400019288. 

[17] Gralton, J., Tovey, E., McLaws, M.-L., & Rawlinson, W. D. (2011). The role of particle size in aerosolised pathogen 

transmission: A review. Journal of Infection, 62(1), 1–13. doi:10.1016/j.jinf.2010.11.010. 

[18] Yang, W., Elankumaran, S., & Marr, L. C. (2011). Concentrations and size distributions of airborne influenza A viruses 

measured indoors at a health centre, a day-care centre and on aeroplanes. Journal of the Royal Society Interface, 8(61), 1176–

1184. doi:10.1098/rsif.2010.0686. 

[19] Yezli, S., & Otter, J. A. (2011). Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted 

Through Food and the Environment. Food and Environmental Virology, 3(1), 1–30. doi:10.1007/s12560-011-9056-7. 

[20] Nikitin, N., Petrova, E., Trifonova, E., & Karpova, O. (2014). Influenza Virus Aerosols in the Air and Their Infectiousness. 

Advances in Virology, 2014, 1–6. doi:10.1155/2014/859090. 

[21] Bourouiba, L., Dehandschoewercker, E., & Bush, J. W. M. (2014). Violent expiratory events: on coughing and sneezing. 

Journal of Fluid Mechanics, 745, 537–563. doi:10.1017/jfm.2014.88. 

[22] Scharfman, B. E., Techet, A. H., Bush, J. W. M., & Bourouiba, L. (2016). Visualization of sneeze ejecta: steps of fluid 

fragmentation leading to respiratory droplets. Experiments in Fluids, 57(2). doi:10.1007/s00348-015-2078-4. 

[23] Bourouiba L., (2020). Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing 

transmission of COVID-19, JAMA 323, 1837. doi:10.1001/jama.2020.4756. 

[24] H. C. Yu, K. W. Mui, L. T. Wong, and H. S. Chu, (2016). Ventilation of general hospital wards for mitigating infection risks 

of three kinds of viruses including Middle East respiratory syndrome coronavirus Indoor and Built Environment 26, 514. 

doi:10.1177/1420326X16631596. 

https://www.simscale.com/

